To solve the problem, we need to find the areas of the parallelogram \(S\) and the quadrilateral \(OABC\), then compare their ratios.
Thus, the correct answer is 8.
Step 1. Area of parallelogram \( S \) with adjacent sides \( OA \) and \( OC \):
\(S = |\vec{a} \times \vec{b}|\)
Step 2. Area of quadrilateral \( OABC \):
\(\text{Area of } OABC = \text{Area of } \triangle OAB + \text{Area of } \triangle OBC\)
\(= \frac{1}{2} \left| \vec{a} \times (12\vec{a} + 4\vec{b}) \right| + \frac{1}{2} \left| \vec{b} \times (12\vec{a} + 4\vec{b}) \right|\)
\(= \frac{1}{2} |4\vec{a} \times \vec{b}| + \frac{1}{2} |12\vec{a} \times \vec{b}|\)
\(= 8|\vec{a} \times \vec{b}|\)
Step 3. Ratio:
\(\text{Ratio} = \frac{\text{Area of quadrilateral } OABC}{\text{Area of parallelogram } S} = \frac{8|\vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|} = 8\)
The Correct Answer is: 8
