Step 1. Area of parallelogram \( S \) with adjacent sides \( OA \) and \( OC \):
\(S = |\vec{a} \times \vec{b}|\)
Step 2. Area of quadrilateral \( OABC \):
\(\text{Area of } OABC = \text{Area of } \triangle OAB + \text{Area of } \triangle OBC\)
\(= \frac{1}{2} \left| \vec{a} \times (12\vec{a} + 4\vec{b}) \right| + \frac{1}{2} \left| \vec{b} \times (12\vec{a} + 4\vec{b}) \right|\)
\(= \frac{1}{2} |4\vec{a} \times \vec{b}| + \frac{1}{2} |12\vec{a} \times \vec{b}|\)
\(= 8|\vec{a} \times \vec{b}|\)
Step 3. Ratio:
\(\text{Ratio} = \frac{\text{Area of quadrilateral } OABC}{\text{Area of parallelogram } S} = \frac{8|\vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|} = 8\)
The Correct Answer is: 8
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: