Step 1. Area of parallelogram \( S \) with adjacent sides \( OA \) and \( OC \):
\(S = |\vec{a} \times \vec{b}|\)
Step 2. Area of quadrilateral \( OABC \):
\(\text{Area of } OABC = \text{Area of } \triangle OAB + \text{Area of } \triangle OBC\)
\(= \frac{1}{2} \left| \vec{a} \times (12\vec{a} + 4\vec{b}) \right| + \frac{1}{2} \left| \vec{b} \times (12\vec{a} + 4\vec{b}) \right|\)
\(= \frac{1}{2} |4\vec{a} \times \vec{b}| + \frac{1}{2} |12\vec{a} \times \vec{b}|\)
\(= 8|\vec{a} \times \vec{b}|\)
Step 3. Ratio:
\(\text{Ratio} = \frac{\text{Area of quadrilateral } OABC}{\text{Area of parallelogram } S} = \frac{8|\vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|} = 8\)
The Correct Answer is: 8
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32