To solve the problem, we need to find the areas of the parallelogram \(S\) and the quadrilateral \(OABC\), then compare their ratios.
Thus, the correct answer is 8.
Step 1. Area of parallelogram \( S \) with adjacent sides \( OA \) and \( OC \):
\(S = |\vec{a} \times \vec{b}|\)
Step 2. Area of quadrilateral \( OABC \):
\(\text{Area of } OABC = \text{Area of } \triangle OAB + \text{Area of } \triangle OBC\)
\(= \frac{1}{2} \left| \vec{a} \times (12\vec{a} + 4\vec{b}) \right| + \frac{1}{2} \left| \vec{b} \times (12\vec{a} + 4\vec{b}) \right|\)
\(= \frac{1}{2} |4\vec{a} \times \vec{b}| + \frac{1}{2} |12\vec{a} \times \vec{b}|\)
\(= 8|\vec{a} \times \vec{b}|\)
Step 3. Ratio:
\(\text{Ratio} = \frac{\text{Area of quadrilateral } OABC}{\text{Area of parallelogram } S} = \frac{8|\vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|} = 8\)
The Correct Answer is: 8
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?


