
1. Given Formula for \( x \):
The formula for \( x \) is:
$ x = \frac{2mv}{qB} = 2 \sqrt{\frac{2m(eV)}{qB}} $
2. For \( H^+ \) Ion:
When considering the \( H^+ \) ion, we substitute the values into the formula:
$ x = 3.91 \, \text{cm} \approx 4 \, \text{cm} $
Hence, option (A) is correct.
3. For \( m = 144 \, (m_p) \):
For a mass of 144 times the proton mass:
$ x = 12 \times x_{H^+} = 48 \, \text{cm} $
Hence, option (B) is correct.
4. For \( 1 \leq A_M \leq 196 \):
We are given the expression:
$ (x_1 - x_0)_{\text{min}} = 2R_{196} - 2R_1 $
$ = (14 \times 4) - 4 = 52 \, \text{cm} $
Hence, option (C) is incorrect.
5. For \( A_M = 196 \):
For \( A_M = 196 \), the minimum value is:
$ w_{\text{min}} = R_{196} = 28 \, \text{cm} $
Hence, option (D) is incorrect.
To solve the problem, we analyze the motion of a singly ionized atom accelerated by a voltage and moving through a magnetic field region.
1. Ion Acceleration:
- Ion accelerated from rest by voltage \(V = 192 \text{ V}\).
- Kinetic energy gained: \( qV = \frac{1}{2} m v^2 \).
- Velocity \( v = \sqrt{\frac{2 q V}{m}} \).
- Mass \( m = A_M \times m_p \), where \( m_p = \frac{5}{3} \times 10^{-27} \text{ kg} \).
2. Motion in Magnetic Field:
- Magnetic field \( B_0 = 0.1 \text{ T} \).
- Ion moves perpendicular to \( B_0 \), causing circular motion with radius:
\( r = \frac{m v}{q B_0} = \frac{A_M m_p}{q B_0} \sqrt{\frac{2 q V}{A_M m_p}} = \frac{m_p}{q B_0} \sqrt{2 q V A_M / m_p} \).
3. Displacement \(x\):
- Ion moves straight along \(x\) for distance \(w\) (width of magnetic field region).
- Deflected by magnetic field to a distance \(x\) below starting trajectory at detector.
- Using circular motion geometry, \( x = r (1 - \cos \theta) \) where \(\theta = \frac{w}{r}\).
- For small angles, \( x \approx \frac{w^2}{2r} \). Using exact expressions if needed.
4. Calculations for given ions:
- For \( H^+ \) (\( A_M = 1 \)) and \( A_M = 144 \), calculate \( x \).
- Calculations give \( x \approx 4 \text{ cm} \) for \( H^+ \) and \( 48 \text{ cm} \) for \( A_M = 144 \).
5. Minimum detector height and magnetic field width:
- From deflection and geometry, minimum height \( (x_1 - x_0) = 55 \text{ cm} \).
- Minimum width \( w \) for \( A_M = 196 \) is about \( 56 \text{ cm} \).
Correct Options:
(A) and (B) are correct.
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?