Step 1: Analyze the given conditions.
Since \( p(x) \) is a polynomial of least degree with a local maximum and minimum at \( x=1 \) and \( x=3 \), respectively, the derivative \( p'(x) \) must have roots at \( x=1 \) and \( x=3 \).
Thus,
\[
p'(x) = k(x-1)(x-3)
\]
where \( k \) is a constant.
Step 2: Find \( p(x) \) by integrating \( p'(x) \).
Integrate \( p'(x) \):
\[
p(x) = k\left(\frac{x^3}{3} - 2x^2 + 3x\right) + C
\]
where \( C \) is the constant of integration.
Step 3: Use the given conditions.
Given:
\[
p(1) = 6
\quad \text{and} \quad
p(3) = 2
\]
Substitute \( x=1 \) into \( p(x) \):
\[
k\left(\frac{1}{3} - 2 + 3\right) + C = 6
\quad \Rightarrow \quad
k\left(\frac{4}{3}\right) + C = 6
\quad \Rightarrow \quad
\frac{4k}{3} + C = 6 \quad \cdots (1)
\]
Substitute \( x=3 \) into \( p(x) \):
\[
k\left(\frac{27}{3} - 2(9) + 3(3)\right) + C = 2
\quad \Rightarrow \quad
k(9 - 18 + 9) + C = 2
\quad \Rightarrow \quad
k(0) + C = 2
\quad \Rightarrow \quad
C = 2 \quad \cdots (2)
\]
Step 4: Solve for \( k \).
Substituting \( C = 2 \) in equation (1):
\[
\frac{4k}{3} + 2 = 6
\quad \Rightarrow \quad
\frac{4k}{3} = 4
\quad \Rightarrow \quad
4k = 12
\quad \Rightarrow \quad
k = 3
\]
Step 5: Find \( p'(0) \).
Now,
\[
p'(x) = 3(x-1)(x-3)
\]
Substituting \( x=0 \):
\[
p'(0) = 3(0-1)(0-3) = 3(-1)(-3) = 9
\]
Thus, \( p'(0) = 9 \).