Step 1: The problem asks us to find the number of seven-digit numbers that can be formed using the digits 1, 2, and 3, where the sum of the digits is 11.
Step 2: The equation we need to solve is \( x_1 + x_2 + x_3 = 7 \) where \( x_1, x_2, x_3 \) represent the number of times the digits 1, 2, and 3 are used, respectively. The constraint is that \( 1x_1 + 2x_2 + 3x_3 = 11 \).
Step 3: This is a Diophantine equation, and we can find the number of non-negative integer solutions that satisfy both conditions using methods such as generating functions or combinatorics.
Step 4: After solving, the number of valid seven-digit numbers is found to be 161. Thus, the correct answer is (3).
The graph shown below depicts:
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)