Step 1: The problem asks us to find the number of seven-digit numbers that can be formed using the digits 1, 2, and 3, where the sum of the digits is 11.
Step 2: The equation we need to solve is \( x_1 + x_2 + x_3 = 7 \) where \( x_1, x_2, x_3 \) represent the number of times the digits 1, 2, and 3 are used, respectively. The constraint is that \( 1x_1 + 2x_2 + 3x_3 = 11 \).
Step 3: This is a Diophantine equation, and we can find the number of non-negative integer solutions that satisfy both conditions using methods such as generating functions or combinatorics.
Step 4: After solving, the number of valid seven-digit numbers is found to be 161. Thus, the correct answer is (3).

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
