The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Given magnetic moment = 4.9 B.M.
We know, M.M = \( \sqrt{n(n+2)} \) B.M.
Where, \( n = \) Number of unpaired electrons (\( e^- \))
\( 4.9 = \sqrt{n(n+2)} \) We get \( n = 4 \)
(A) \( \mathrm{Cr}^{2+} = [\mathrm{Ar}]\,3d^4 \) (4 unpaired \( e^- \))
(B) \( \mathrm{Fe}^{2+} = [\mathrm{Ar}]\,3d^6 \) (4 unpaired \( e^- \))
(C) \( \mathrm{Fe}^{3+} = [\mathrm{Ar}]\,3d^5 \) (5 unpaired \( e^- \))
(D) \( \mathrm{Co}^{2+} = [\mathrm{Ar}]\,3d^7 \) (3 unpaired \( e^- \))
(E) \( \mathrm{Mn}^{2+} = [\mathrm{Ar}]\,3d^5 \) (5 unpaired \( e^- \))
‘X’ is the number of electrons in $ t_2g $ orbitals of the most stable complex ion among $ [Fe(NH_3)_6]^{3+} $, $ [Fe(Cl)_6]^{3-} $, $ [Fe(C_2O_4)_3]^{3-} $ and $ [Fe(H_2O)_6]^{3+} $. The nature of oxide of vanadium of the type $ V_2O_x $ is:
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to