The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Given magnetic moment = 4.9 B.M.
We know, M.M = \( \sqrt{n(n+2)} \) B.M.
Where, \( n = \) Number of unpaired electrons (\( e^- \))
\( 4.9 = \sqrt{n(n+2)} \) We get \( n = 4 \)
(A) \( \mathrm{Cr}^{2+} = [\mathrm{Ar}]\,3d^4 \) (4 unpaired \( e^- \))
(B) \( \mathrm{Fe}^{2+} = [\mathrm{Ar}]\,3d^6 \) (4 unpaired \( e^- \))
(C) \( \mathrm{Fe}^{3+} = [\mathrm{Ar}]\,3d^5 \) (5 unpaired \( e^- \))
(D) \( \mathrm{Co}^{2+} = [\mathrm{Ar}]\,3d^7 \) (3 unpaired \( e^- \))
(E) \( \mathrm{Mn}^{2+} = [\mathrm{Ar}]\,3d^5 \) (5 unpaired \( e^- \))
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: