Given that \( P(4, 4\sqrt{3}) \) lies on the parabola \( y^2 = 4ax \), we can find \( a \) by substituting the coordinates of P: \[ (4\sqrt{3})^2 = 4a(4) \quad \Rightarrow \quad 48 = 16a \quad \Rightarrow \quad a = 3. \] Now, since PQ is a focal chord, we use the standard result for the area of a quadrilateral formed by the focal chord and perpendiculars from the points on the parabola to the directrix.
The area of quadrilateral PQMN is \( \frac{263\sqrt{3}}{8} \).
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to: