Given that \( P(4, 4\sqrt{3}) \) lies on the parabola \( y^2 = 4ax \), we can find \( a \) by substituting the coordinates of P: \[ (4\sqrt{3})^2 = 4a(4) \quad \Rightarrow \quad 48 = 16a \quad \Rightarrow \quad a = 3. \] Now, since PQ is a focal chord, we use the standard result for the area of a quadrilateral formed by the focal chord and perpendiculars from the points on the parabola to the directrix.
The area of quadrilateral PQMN is \( \frac{263\sqrt{3}}{8} \).
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: