Step 1: Write the coefficient matrix of the system.
\[
A =
\begin{pmatrix}
1 & -n & 1 \\
1 & n-2 & n+1 \\
0 & n-1 & 1
\end{pmatrix}
\]
Step 2: Find the determinant of the coefficient matrix.
\[
|A| =
\begin{vmatrix}
1 & -n & 1\\
1 & n-2 & n+1 \\
0 & n-1 & 1
\end{vmatrix}
\]
\[
|A| = 1[(n-2)(1)-(n+1)(n-1)] + n[1-(n+1)0] + 1[(n-1)]
\]
\[
|A| = -n^2 + 2n - 1
\]
Step 3: Condition for unique solution.
For a unique solution,
\[
|A| \neq 0
\Rightarrow -n^2 + 2n - 1 \neq 0
\]
\[
(n-1)^2 \neq 0 \Rightarrow n \neq 1
\]
Step 4: Find probability and required sum.
Possible values of \(n\) on a die are \(1,2,3,4,5,6\).
Unique solution exists for all values except \(n=1\).
\[
\text{Favourable outcomes} = 5
\Rightarrow \text{Probability} = \frac{5}{6}
\]
Thus \(k=5\) and sum of all possible values of \(n\) giving unique solution:
\[
2+3+4+5+6 = 20
\]
\[
k + \text{sum} = 5 + 16 = 21
\]
Final Answer:
\[
\boxed{21}
\]