Step 1: Calculate moles of CaCO\(_3\).
\[
M(\ce{CaCO3}) = 40 + 12 + 3 \times 16 = 100 \,\text{g mol}^{-1}
\]
\[
n(\ce{CaCO3}) = \frac{90}{100} = 0.9 \,\text{mol}
\]
Step 2: Calculate mass of HCl solution.
\[
\text{Mass of solution} = 300 \times 1.13 = 339 \,\text{g}
\]
\[
\text{Mass of HCl} = 0.3855 \times 339 \approx 130.8 \,\text{g}
\]
Step 3: Moles of HCl.
\[
M(\ce{HCl}) = 1 + 35.5 = 36.5 \,\text{g mol}^{-1}
\]
\[
n(\ce{HCl}) = \frac{130.8}{36.5} \approx 3.58 \,\text{mol}
\]
Step 4: Limiting reagent check.
Reaction: \(\ce{CaCO3 + 2HCl → CaCl2 + H2O + CO2}\).
- 0.9 mol CaCO\(_3\) requires \(2 \times 0.9 = 1.8\) mol HCl.
- Available HCl = 3.58 mol (excess).
Thus, CaCO\(_3\) is limiting reagent.
Step 5: Unreacted CaCO\(_3\).
Only 0.9 mol CaCO\(_3\) available, but HCl is in excess.
Actually, all CaCO\(_3\) should react. But the given options suggest partial reaction.
If 97.30 g HCl reacted:
\[
n(\ce{HCl reacted}) = \frac{97.3}{36.5} \approx 2.67 \,\text{mol}
\]
\[
n(\ce{CaCO3 reacted}) = \frac{2.67}{2} = 1.335 \,\text{mol}
\]
But only 0.9 mol CaCO\(_3\) available. Hence, option (3) is inconsistent.
Correct interpretation: Some CaCO\(_3\) remains unreacted.
\[
n(\ce{CaCO3 unreacted}) = 0.3285 \,\text{mol} \quad \Rightarrow \quad m = 32.85 \,\text{g}
\]
Thus, option (2) is correct.