Question:

Let $\mathbf{x}$ be an $n \times 1$ real column vector with length $l=\sqrt{\mathbf{x}^T\mathbf{x}}$. The trace of the matrix $P=\mathbf{x}\mathbf{x}^T$ is _____________

Show Hint

For any vectors $a\in\mathbb{R}^{n\times 1}$ and $b\in\mathbb{R}^{n\times 1}$, $\operatorname{tr}(ab^T)=b^Ta$. In particular, $\operatorname{tr}(\mathbf{x}\mathbf{x}^T)=\mathbf{x}^T\mathbf{x}=\|\mathbf{x}\|^2$.
Updated On: Aug 28, 2025
  • $l^2$
  • $\dfrac{l^2}{4}$
  • $l$
  • $\dfrac{l^2}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use trace cyclicity. $\operatorname{tr}(P)=\operatorname{tr}(\mathbf{x}\mathbf{x}^T)=\operatorname{tr}(\mathbf{x}^T\mathbf{x})$.
Step 2: Reduce to a scalar. $\mathbf{x}^T\mathbf{x}$ is the sum of squares of the components of $\mathbf{x}$, i.e., $\|\mathbf{x}\|_2^2=l^2$.
Therefore, $\operatorname{tr}(P)=\mathbf{x}^T\mathbf{x}=l^2$.
\[ \boxed{l^2} \]
Was this answer helpful?
0
0

Top Questions on Linear Algebra

View More Questions

Questions Asked in GATE EC exam

View More Questions