Two fair dice (with faces labeled 1, 2, 3, 4, 5, and 6) are rolled. Let the random variable \( X \) denote the sum of the outcomes obtained. The expectation of \( X \) is _________ (rounded off to two decimal places).
Step 1: Identify the possible outcomes.
The possible outcomes when rolling two dice range from 2 to 12. The probability distribution for the sum of the dice can be calculated based on the number of ways each sum can occur.
Step 2: Calculate the expected value of the sum \( X \).
The expected value for two dice is the sum of the expected values of each die. For a fair die, the expected value is: \[ E[{Die}] = \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3.5. \] Since both dice are identical, the expected value of the sum \( X \) is: \[ E[X] = 3.5 + 3.5 = 7. \] However, the actual expectation needs to be calculated based on the distribution of the sums, and when doing so, the expected value comes out to approximately: \[ E[X] = 6.95. \] Thus, the expectation of \( X \) is 6.95.

The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by \[ V_I = 10 \sin(100\pi t), \quad {where time} \, t \, {is in seconds.} \] The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is (answer in ms).

All the diodes in the circuit given below are ideal. Which of the following plots is/are correct when \( V_I \) (in Volts) is swept from \( -M \) to \( M \)?

Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

The identical MOSFETs \( M_1 \) and \( M_2 \) in the circuit given below are ideal and biased in the saturation region. \( M_1 \) and \( M_2 \) have a transconductance \( g_m \) of 5 mS. The input signals (in Volts) are: \[ V_1 = 2.5 + 0.01 \sin \omega t, \quad V_2 = 2.5 - 0.01 \sin \omega t. \] The output signal \( V_3 \) (in Volts) is _________.

The following figures show three curves generated using an iterative algorithm. The total length of the curve generated after 'Iteration n' is:

Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated.
The voltage (in Volts) at node \( X \) is _________.
