\( \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \)
No. of elements in \( S_1 \): \( A = A^T \Rightarrow 5^3 \times 5^3 \)
No. of elements in \( S_2 \): \( A = -A^T \Rightarrow 0 \) since no zero in \( S_2 \)
No. of elements in \( S_3 \):
\( a_{11} + a_{22} + a_{33} = 0 \Rightarrow (1, 2, -3) \Rightarrow 31 \)
or \( (1,1, -2) \Rightarrow 3 \)
or \( (-1,-1,2) \Rightarrow 3 \)
So, it simplifies to \( 12 \times 5^6 \)
\( n(S_1 \cap S_3) = 12 \times 5^3 \)
\( n(S_1 \cup S_2 \cup S_3) = 5^6(1 + 12 - 12) \Rightarrow 5^3 \times [13 \times 5^3 - 12] = 125\alpha \)
Thus, \( \alpha = 1613 \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).