\( \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \)
No. of elements in \( S_1 \): \( A = A^T \Rightarrow 5^3 \times 5^3 \)
No. of elements in \( S_2 \): \( A = -A^T \Rightarrow 0 \) since no zero in \( S_2 \)
No. of elements in \( S_3 \):
\( a_{11} + a_{22} + a_{33} = 0 \Rightarrow (1, 2, -3) \Rightarrow 31 \)
or \( (1,1, -2) \Rightarrow 3 \)
or \( (-1,-1,2) \Rightarrow 3 \)
So, it simplifies to \( 12 \times 5^6 \)
\( n(S_1 \cap S_3) = 12 \times 5^3 \)
\( n(S_1 \cup S_2 \cup S_3) = 5^6(1 + 12 - 12) \Rightarrow 5^3 \times [13 \times 5^3 - 12] = 125\alpha \)
Thus, \( \alpha = 1613 \)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to