\( \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \)
No. of elements in \( S_1 \): \( A = A^T \Rightarrow 5^3 \times 5^3 \)
No. of elements in \( S_2 \): \( A = -A^T \Rightarrow 0 \) since no zero in \( S_2 \)
No. of elements in \( S_3 \):
\( a_{11} + a_{22} + a_{33} = 0 \Rightarrow (1, 2, -3) \Rightarrow 31 \)
or \( (1,1, -2) \Rightarrow 3 \)
or \( (-1,-1,2) \Rightarrow 3 \)
So, it simplifies to \( 12 \times 5^6 \)
\( n(S_1 \cap S_3) = 12 \times 5^3 \)
\( n(S_1 \cup S_2 \cup S_3) = 5^6(1 + 12 - 12) \Rightarrow 5^3 \times [13 \times 5^3 - 12] = 125\alpha \)
Thus, \( \alpha = 1613 \)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: