Question:

Let $ \mathbf{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \, \mathbf{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} $ and a vector $ \mathbf{c} $ be such that $ (\mathbf{a} - \mathbf{c}) \times \mathbf{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} $ and $ \mathbf{a} \cdot \mathbf{c} = 3 $. If $ \mathbf{b} \times \mathbf{c} = \mathbf{a} $, then $ |\mathbf{a} \cdot \mathbf{c}| $ is equal to:

Show Hint

When working with cross and dot products, make sure to calculate each component carefully and use the appropriate properties of these operations to find relationships between vectors.
Updated On: Apr 27, 2025
  • 18
  • 12
  • 9
  • 15
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given: \[ \mathbf{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \mathbf{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \] The cross product \( \mathbf{a} \times \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 2 & -3 & 1 3 & 2 & 5 \end{vmatrix} = \hat{i} \left( (-3)(5) - (1)(2) \right) - \hat{j} \left( (2)(5) - (1)(3) \right) + \hat{k} \left( (2)(2) - (-3)(3) \right) \] \[ = \hat{i}(-15 - 2) - \hat{j}(10 - 3) + \hat{k}(4 + 9) \] \[ = -17\hat{i} - 7\hat{j} + 13\hat{k} \] So, \[ \mathbf{a} \times \mathbf{b} = -17\hat{i} - 7\hat{j} + 13\hat{k} \] We are given that: \[ (\mathbf{a} - \mathbf{c}) \times \mathbf{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] Thus, we have: \[ (\mathbf{a} - \mathbf{c}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} \] \[ -18\hat{i} - 3\hat{j} + 12\hat{k} = -17\hat{i} - 7\hat{j} + 13\hat{k} - \mathbf{c} \times \mathbf{b} \] So, \[ \mathbf{c} \times \mathbf{b} = -\hat{i} + 4\hat{j} - \hat{k} \] Now, we use the condition \( \mathbf{b} \times \mathbf{c} = \mathbf{a} \): \[ \mathbf{b} \times \mathbf{c} = (3\hat{i} + 2\hat{j} + 5\hat{k}) \times \mathbf{c} = 2\hat{i} - 3\hat{j} + \hat{k} \] Thus, \[ \mathbf{c} \times \mathbf{b} = \mathbf{a} \implies \mathbf{c} = \left( \mathbf{a} \cdot \mathbf{b} \right) \] Finally, we calculate: \[ \mathbf{a} \cdot \mathbf{c} = -2 - 12 - 1 = -15 \] Hence, \( |\mathbf{a} \cdot \mathbf{c}| = 15 \).
Was this answer helpful?
0
0