Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).
We have vectors \(\mathbf{a}=\langle 2,-3,1\rangle\) and \(\mathbf{b}=\langle 3,2,5\rangle\). A vector \(\mathbf{c}\) satisfies \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\langle -18,-3,12\rangle\) and \(\mathbf{a}\cdot\mathbf{c}=3\). Define \(\mathbf{d}=\mathbf{b}\times\mathbf{c}\). We need \( |\mathbf{a}\cdot\mathbf{d}| \).
Use the identity \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\mathbf{a}\times\mathbf{b}-\mathbf{c}\times\mathbf{b}=\mathbf{a}\times\mathbf{b}+\mathbf{b}\times\mathbf{c}=\mathbf{a}\times\mathbf{b}+\mathbf{d}\).
Step 1: Compute \(\mathbf{a}\times\mathbf{b}\).
\[ \mathbf{a}\times\mathbf{b}= \begin{vmatrix} \hat{i}&\hat{j}&\hat{k}\\ 2&-3&1\\ 3&2&5 \end{vmatrix} = (-17)\hat{i}+(-7)\hat{j}+13\hat{k}=\langle -17,-7,13\rangle. \]
Step 2: Use \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\mathbf{a}\times\mathbf{b}+\mathbf{d}\) to find \(\mathbf{d}\).
\[ \mathbf{d}=\langle -18,-3,12\rangle-\langle -17,-7,13\rangle=\langle -1,4,-1\rangle. \]
Step 3: Compute \(\mathbf{a}\cdot\mathbf{d}\).
\[ \mathbf{a}\cdot\mathbf{d}=\langle 2,-3,1\rangle\cdot\langle -1,4,-1\rangle =2(-1)+(-3)(4)+1(-1)=-2-12-1=-15. \]
\[ |\mathbf{a}\cdot\mathbf{d}|=|-15|=15. \]
Answer: 15
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
