Question:

Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).

Show Hint

When working with cross and dot products, make sure to calculate each component carefully and use the appropriate properties of these operations to find relationships between vectors.
Updated On: Oct 31, 2025
  • 18
  • 12
  • 9
  • 15
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

Given: \[ \mathbf{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \mathbf{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \] The cross product \( \mathbf{a} \times \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 2 & -3 & 1 3 & 2 & 5 \end{vmatrix} = \hat{i} \left( (-3)(5) - (1)(2) \right) - \hat{j} \left( (2)(5) - (1)(3) \right) + \hat{k} \left( (2)(2) - (-3)(3) \right) \] \[ = \hat{i}(-15 - 2) - \hat{j}(10 - 3) + \hat{k}(4 + 9) \] \[ = -17\hat{i} - 7\hat{j} + 13\hat{k} \] So, \[ \mathbf{a} \times \mathbf{b} = -17\hat{i} - 7\hat{j} + 13\hat{k} \] We are given that: \[ (\mathbf{a} - \mathbf{c}) \times \mathbf{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] Thus, we have: \[ (\mathbf{a} - \mathbf{c}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} \] \[ -18\hat{i} - 3\hat{j} + 12\hat{k} = -17\hat{i} - 7\hat{j} + 13\hat{k} - \mathbf{c} \times \mathbf{b} \] So, \[ \mathbf{c} \times \mathbf{b} = -\hat{i} + 4\hat{j} - \hat{k} \] Now, we use the condition \( \mathbf{b} \times \mathbf{c} = \mathbf{a} \): \[ \mathbf{b} \times \mathbf{c} = (3\hat{i} + 2\hat{j} + 5\hat{k}) \times \mathbf{c} = 2\hat{i} - 3\hat{j} + \hat{k} \] Thus, \[ \mathbf{c} \times \mathbf{b} = \mathbf{a} \implies \mathbf{c} = \left( \mathbf{a} \cdot \mathbf{b} \right) \] Finally, we calculate: \[ \mathbf{a} \cdot \mathbf{c} = -2 - 12 - 1 = -15 \] Hence, \( |\mathbf{a} \cdot \mathbf{c}| = 15 \).
Was this answer helpful?
1
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We have vectors \(\mathbf{a}=\langle 2,-3,1\rangle\) and \(\mathbf{b}=\langle 3,2,5\rangle\). A vector \(\mathbf{c}\) satisfies \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\langle -18,-3,12\rangle\) and \(\mathbf{a}\cdot\mathbf{c}=3\). Define \(\mathbf{d}=\mathbf{b}\times\mathbf{c}\). We need \( |\mathbf{a}\cdot\mathbf{d}| \).

Concept Used:

Use the identity \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\mathbf{a}\times\mathbf{b}-\mathbf{c}\times\mathbf{b}=\mathbf{a}\times\mathbf{b}+\mathbf{b}\times\mathbf{c}=\mathbf{a}\times\mathbf{b}+\mathbf{d}\).

Step-by-Step Solution:

Step 1: Compute \(\mathbf{a}\times\mathbf{b}\).

\[ \mathbf{a}\times\mathbf{b}= \begin{vmatrix} \hat{i}&\hat{j}&\hat{k}\\ 2&-3&1\\ 3&2&5 \end{vmatrix} = (-17)\hat{i}+(-7)\hat{j}+13\hat{k}=\langle -17,-7,13\rangle. \]

Step 2: Use \((\mathbf{a}-\mathbf{c})\times\mathbf{b}=\mathbf{a}\times\mathbf{b}+\mathbf{d}\) to find \(\mathbf{d}\).

\[ \mathbf{d}=\langle -18,-3,12\rangle-\langle -17,-7,13\rangle=\langle -1,4,-1\rangle. \]

Step 3: Compute \(\mathbf{a}\cdot\mathbf{d}\).

\[ \mathbf{a}\cdot\mathbf{d}=\langle 2,-3,1\rangle\cdot\langle -1,4,-1\rangle =2(-1)+(-3)(4)+1(-1)=-2-12-1=-15. \]

Final Computation & Result

\[ |\mathbf{a}\cdot\mathbf{d}|=|-15|=15. \]

Answer: 15

Was this answer helpful?
1
0

Top Questions on Vectors

View More Questions