Given:
\[
\mathbf{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \mathbf{b} = 3\hat{i} + 2\hat{j} + 5\hat{k}
\]
The cross product \( \mathbf{a} \times \mathbf{b} \) is calculated as follows:
\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
2 & -3 & 1
3 & 2 & 5
\end{vmatrix}
= \hat{i} \left( (-3)(5) - (1)(2) \right) - \hat{j} \left( (2)(5) - (1)(3) \right) + \hat{k} \left( (2)(2) - (-3)(3) \right)
\]
\[
= \hat{i}(-15 - 2) - \hat{j}(10 - 3) + \hat{k}(4 + 9)
\]
\[
= -17\hat{i} - 7\hat{j} + 13\hat{k}
\]
So,
\[
\mathbf{a} \times \mathbf{b} = -17\hat{i} - 7\hat{j} + 13\hat{k}
\]
We are given that:
\[
(\mathbf{a} - \mathbf{c}) \times \mathbf{b} = -18\hat{i} - 3\hat{j} + 12\hat{k}
\]
Thus, we have:
\[
(\mathbf{a} - \mathbf{c}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b}
\]
\[
-18\hat{i} - 3\hat{j} + 12\hat{k} = -17\hat{i} - 7\hat{j} + 13\hat{k} - \mathbf{c} \times \mathbf{b}
\]
So,
\[
\mathbf{c} \times \mathbf{b} = -\hat{i} + 4\hat{j} - \hat{k}
\]
Now, we use the condition \( \mathbf{b} \times \mathbf{c} = \mathbf{a} \):
\[
\mathbf{b} \times \mathbf{c} = (3\hat{i} + 2\hat{j} + 5\hat{k}) \times \mathbf{c} = 2\hat{i} - 3\hat{j} + \hat{k}
\]
Thus,
\[
\mathbf{c} \times \mathbf{b} = \mathbf{a} \implies \mathbf{c} = \left( \mathbf{a} \cdot \mathbf{b} \right)
\]
Finally, we calculate:
\[
\mathbf{a} \cdot \mathbf{c} = -2 - 12 - 1 = -15
\]
Hence, \( |\mathbf{a} \cdot \mathbf{c}| = 15 \).