If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:
For infinitely many solutions, the rank of the coefficient matrix and the augmented matrix must be equal and less than the number of variables. Using determinant conditions:
\[ \Delta = \begin{vmatrix} 3 & 1 & \beta 2 & \alpha & 1 \\ 1 & 2 & 1 \end{vmatrix} = 0 \quad \text{and} \quad \Delta_3 = \begin{vmatrix} 3 & 1 & 3\\ 2 & \alpha & 2 \\1 & 2 & 4 \end{vmatrix} = 0 \] Solving gives \( \alpha = \frac{19}{9}, \beta = \frac{6}{11} \), so: \[ 22\beta - 9\alpha = 31 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: