If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:
For infinitely many solutions, the rank of the coefficient matrix and the augmented matrix must be equal and less than the number of variables. Using determinant conditions:
\[ \Delta = \begin{vmatrix} 3 & 1 & \beta 2 & \alpha & 1 \\ 1 & 2 & 1 \end{vmatrix} = 0 \quad \text{and} \quad \Delta_3 = \begin{vmatrix} 3 & 1 & 3\\ 2 & \alpha & 2 \\1 & 2 & 4 \end{vmatrix} = 0 \] Solving gives \( \alpha = \frac{19}{9}, \beta = \frac{6}{11} \), so: \[ 22\beta - 9\alpha = 31 \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).