1. Understanding the Problem:
We are given the following expression:
$ I = \lim_{x \to 0^+} \left( \sin(kx) + \cos(x + x) \right)^2 x = e^6 $
2. Taking the Natural Logarithm:
We begin by taking the natural logarithm of both sides of the equation:
$ \ln I = \lim_{x \to 0^+} \frac{2}{x} \left( \sin(\sin(kx)) + \cos(x + x) - 1 \right) $
3. Simplifying the Expression:
Now we simplify the expression by analyzing the terms:
$ \ln I = \lim_{x \to 0^+} 2 \left( \frac{\sin(\sin(kx)) \cdot \sin(kx) \cdot kx}{\sin(kx)} + \frac{1 - \cos(x)}{x^2} \right) $
4. Evaluating the Limit:
Taking the limit as $ x \to 0^+ $ and applying known limits for sine and cosine functions, we get:
$ \ln I = 2(k + 1) $
5. Solving for $k$:
Since we are given that $ I = e^{6} $, equating both sides results in:
$ 2(k + 1) = 6 $
6. Final Calculation:
Solving for $ k $:
$ k + 1 = 3 \Rightarrow k = 2 $
Final Answer:
Thus, the value of $ k $ is $ 2 $.
To solve the problem, we need to find the value of \(k \in \mathbb{R}\) such that:
\[ \lim_{x \to 0^+} \left(\sin(\sin kx) + \cos x + x \right)^{\frac{2}{x}} = e^6 \]1. Simplify the expression inside the limit:
As \(x \to 0\), use the expansions:
So inside the parentheses, approximate:
\[ \sin(\sin kx) + \cos x + x \approx kx + \left(1 - \frac{x^2}{2}\right) + x = 1 + (k + 1)x - \frac{x^2}{2} \]2. Rewrite the limit in exponential form:
Let
\[
L = \lim_{x \to 0^+} \left(1 + (k+1)x - \frac{x^2}{2}\right)^{\frac{2}{x}}
\]
Take natural log:
\[
\ln L = \lim_{x \to 0^+} \frac{2}{x} \ln \left(1 + (k+1)x - \frac{x^2}{2}\right)
\]
Using \(\ln(1 + y) \approx y\) for small \(y\), we get:
\[
\ln L = \lim_{x \to 0^+} \frac{2}{x} \left((k+1)x - \frac{x^2}{2}\right) = \lim_{x \to 0^+} 2(k+1) - x = 2(k+1)
\]
3. Given:
\[
L = e^6 \Rightarrow \ln L = 6
\]
So,
\[
2(k+1) = 6 \implies k + 1 = 3 \implies k = 2
\]
Final Answer:
\[
\boxed{2}
\]