We are given: \[ y = \lim_{x \to 0^+} \frac{(\sin(\sin(kx)) + \cos x + x)^2}{x} \]
Taking the natural logarithm on both sides: \[ \ln y = \lim_{x \to 0^+} \frac{\ln(\sin(\sin(kx)) + \cos x + x)}{x} \]
We use differentiation: \[ \lim_{x \to 0^+} 2 \times \frac{k \cos(\sin(kx)) \cos(kx) - \sin(x) + 1}{\sin(\sin(kx)) + \cos x + x} \] Simplifying: \[ \lim_{x \to 0^+} 2 \times \frac{k + 1}{1} = 6 \]
\[ 2(k+1) = 6 \] \[ k+1 = 3 \] \[ k = 2 \]
\[ k = 2 \]