Since the vectors are perpendicular, \[ \vec{A} \cdot \vec{B} = 0 \] Hence, \[ 4 - 6n + 8p = 0 \tag{1} \]
Given that the magnitudes are equal: \[ |\vec{A}| = |\vec{B}| \] Using the magnitude formula: \[ \sqrt{4 + 9n^2 + 4} = \sqrt{4 + 4 + 16p^2} \]
Squaring both sides: \[ 4 + 9n^2 + 4 = 4 + 4 + 16p^2 \] \[ 9n^2 = 16p^2 \] \[ p = \pm \frac{3}{4}n \]
Substitute \( p = \frac{3}{4}n \) into (1): \[ 4 - 6n + 8\left(\frac{3}{4}n\right) = 0 \] \[ 4 - 6n + 6n = 0 \Rightarrow 4 = 0 \] This is a contradiction, so \( p = \frac{3}{4}n \) is not valid.
Now take \( p = -\frac{3}{4}n \): \[ 4 - 6n + 8\left(-\frac{3}{4}n\right) = 0 \] \[ 4 - 6n - 6n = 0 \] \[ 4 - 12n = 0 \Rightarrow n = \frac{1}{3} \]
$\boxed{n = \dfrac{1}{3}}$
Given the condition that vectors \( \vec{A} \cdot \vec{B} = 0 \), we start by applying the dot product:
\( 4 - 6n + 8p = 0 \)
It is also given that the magnitudes of the vectors are equal: \( |\vec{A}| = |\vec{B}| \)
Using the magnitude formula:
\( \sqrt{4 + 9n^2 + 4} = \sqrt{4 + 4 + 16p^2} \)
Squaring both sides and simplifying:
\( 4 + 9n^2 + 4 = 4 + 4 + 16p^2 \)
\( 9n^2 = 16p^2 \)
Solving for \( p \):
\( p = \pm \frac{3}{4}n \)
Substitute \( p = \frac{3}{4}n \) back into the dot product equation:
\( 4 - 6n + 8 \cdot \frac{3}{4}n = 0 \)
\( 4 - 6n + 6n = 0 \)
\( 4 = 0 \) → contradiction? (Note: If we substitute with the opposite sign \( p = -\frac{3}{4}n \), we get:)
\( 4 - 6n - 6n = 0 \Rightarrow 4 - 12n = 0 \Rightarrow n = \frac{1}{3} \)
Final Answer: \( n = \frac{1}{3} \)

In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.


Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: