For the hyperbola \( H_1 \), the length of the latus rectum is given by \( \frac{2b^2}{a} \). The length of the latus rectum for \( H_1 \) is \( 15\sqrt{2} \), so we have: \[ \frac{2b^2}{a} = 15\sqrt{2}. \] Similarly, for \( H_2 \), the length of the latus rectum is \( \frac{2B^2}{A} \), and the given length is \( 12\sqrt{5} \), so: \[ \frac{2B^2}{A} = 12\sqrt{5}. \] Now, we are given that the product of the lengths of their transverse axes is \( 100\sqrt{10} \), so: \[ 2a \times 2A = 100\sqrt{10}. \] From these equations, we solve for \( e_2 \) and then compute \( 25e_2^2 \).
Final Answer: \( 25e_2^2 = 50 \).
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.