When solving integrals with mixed functions like exponentials and rational functions, it is helpful to split the integral into separate parts. Look for substitution opportunities (like \( u = \sqrt{x} \)) to simplify the integrand. Additionally, remember that the exponential function, \( e^x \), integrates easily, and such terms typically appear straightforwardly in the result. Always verify your substitution and simplify step-by-step.
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Let \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \). Substitute into both terms.
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]Substitute \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \):
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]Thus:
\[ I = e^x \sqrt{x} + C. \]Evaluate the integral: \[ \int \frac{2x^2 - 3}{(x^2 - 4)(x^2 + 1)} \,dx = A \tan^{-1} x + B \log(x - 2) + C \log(x + 2) \] Given that, \[ 64A + 7B - 5C = ? \]
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |