Question:

\(\text{Evaluate } \int e^x \left( \frac{2x + 1}{2 \sqrt{x}} \right) dx:\)

Updated On: Nov 15, 2024
  • \( \frac{1}{2\sqrt{x}} e^x + C \)
  • \( -e^x \sqrt{x} + C \)
  • \( -\frac{1}{2\sqrt{x}} e^x + C \)
  • \( e^x \sqrt{x} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The given integral is:

\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]

Simplify the integrand:

\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]

Substitute this into the integral:

\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]

Split the integral:

\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]

Let \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \). Substitute into both terms.

For the first term:

\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]

For the second term:

\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]

Combine the results:

\[ I = e^x \sqrt{x} + e^x + C. \]

Thus:

\[ I = e^x \sqrt{x} + C. \]

Was this answer helpful?
0
0