The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Let \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \). Substitute into both terms.
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]