When solving integrals with mixed functions like exponentials and rational functions, it is helpful to split the integral into separate parts. Look for substitution opportunities (like \( u = \sqrt{x} \)) to simplify the integrand. Additionally, remember that the exponential function, \( e^x \), integrates easily, and such terms typically appear straightforwardly in the result. Always verify your substitution and simplify step-by-step.
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Let \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \). Substitute into both terms.
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Substitute \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \):
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]
If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world