When solving integrals with mixed functions like exponentials and rational functions, it is helpful to split the integral into separate parts. Look for substitution opportunities (like \( u = \sqrt{x} \)) to simplify the integrand. Additionally, remember that the exponential function, \( e^x \), integrates easily, and such terms typically appear straightforwardly in the result. Always verify your substitution and simplify step-by-step.
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Let \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \). Substitute into both terms.
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]
The given integral is:
\[ I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx. \]
Simplify the integrand:
\[ \frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}. \]
Substitute this into the integral:
\[ I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx. \]
Split the integral:
\[ I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}. \]
Substitute \( u = \sqrt{x} \), so \( x = u^2 \) and \( dx = 2u \, du \):
For the first term:
\[ \int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}. \]
For the second term:
\[ \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x. \]
Combine the results:
\[ I = e^x \sqrt{x} + e^x + C. \]
Thus:
\[ I = e^x \sqrt{x} + C. \]
Fill in the blank with the correct option.
The teacher believed that the student’s sudden lack of interest in class was an ..........., as he had always been enthusiastic and attentive.
What comes next in the series?
\(2, 6, 12, 20, 30, \ ?\)