The correct option is(A): 1.
\(\int^1_{-1} \ f ( x ) \ dx \ = \int^1_{-1} ( x - [x] ) \ dx = \int^1_{-1} \ x \ dx - \int^1_{-1} [x ] \ dx\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 0 - \int^1_{-1} [ x ] \ dx [ \because \ x \ is \ an \ odd \ number ]\)
But $[ x ] = \bigg \{ \begin{array}
\ -1 \\
0, \\
1, \\
\end {array} \begin{array}
\ \ \ if \\
\ \ if \\
\ \ if \\
\end {array} \begin{array}
\ \ \ -1 \le x < 0 \\
\ \ \le x < 1 \\
\ \ \ x = 1 \\
\end {array}$
\(\therefore \int^1_{-1} [ x ] \ dx = \int^0_{-1} [ x ] \ dx + \int^1_0 [ x ] \ dx\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \int^0_{-1} ( - 1) dx + \int^1 _0 \ 0 \ dx\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = - [ x ]^0_{-1} + 0 = {-1}\)
\(\therefore \int^1_{-1} f ( x ) \ dx = 1\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.
