To solve the problem, we must determine \( y(1) \) using the given differential equation:
\(\frac{dy}{dx} = \left( e^{-2\sqrt{x}} g\left(f\left(f(x)\right)\right) - \frac{y}{\sqrt{x}} \right)\), with the initial condition \( y(0) = 0 \).
First, let's evaluate \(f(f(x))\):
Now, apply this into \(\frac{dy}{dx}\) \)\)
\(\frac{dy}{dx} = e^{-2\sqrt{x}} g(x - 2) - \frac{y}{\sqrt{x}}\)
Since \(g(x) = e^x\), we substitute:
The equation becomes:
\(\frac{dy}{dx} = e^{-2\sqrt{x}} e^{x-2} - \frac{y}{\sqrt{x}}\)
Simplifying:
\(\frac{dy}{dx} = e^{x - 2 - 2\sqrt{x}} - \frac{y}{\sqrt{x}}\)
Consider the substitution \(\frac{dy}{dx} + \frac{y}{\sqrt{x}} = e^{x - 2 - 2\sqrt{x}}\)
This is a first-order linear differential equation which can be solved by finding an integrating factor. The integrating factor is:
\(\mu(x) = e^{\int \frac{1}{\sqrt{x}} \, dx} = e^{2\sqrt{x}}\)
Multiplying through by the integrating factor gives:
\(e^{2\sqrt{x}} \frac{dy}{dx} + e^{2\sqrt{x}} \frac{y}{\sqrt{x}} = e^{x} e^{-2}\)
The left-hand side is the derivative of \(y(x) e^{2\sqrt{x}}\):
\(\frac{d}{dx}(y e^{2\sqrt{x}}) = e^{x-2}\)
Integrate both sides with respect to \( x \):
Thus:
\(y(x) e^{2\sqrt{x}} = e^{x-2} + C\)
Given \( y(0) = 0 \), we solve for \( C \):
Substitute \( C \) back into the equation:
\(y e^{2\sqrt{x}} = e^{x-2} - e^{-2}\)
Solving for \( y \):
\(y = e^{x-2} e^{-2\sqrt{x}} - e^{-2} e^{-2\sqrt{x}}\)
Evaluating at \( x=1 \):
\(y(1) = e^{1-2} e^{-2} - e^{-2} e^{-2}\)
\(y(1) = \frac{e^{-1} - e^{-4}}{e^{0}} = \frac{e^{-1} - e^{-4}}{1} = \frac{e^{-1}(1 - e^{-3})}{1}\)
\(= \frac{(e^{-1} - e^{-4})}{1} = \frac{e^{-1} - e^{-4}}{e^{0}} = \frac{e - 1}{e^4}\)
So, the correct answer is \(\frac{e-1}{e^4}\).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
