Step 1: Simplify the differential equation
Given \( f(x) = x - 1 \) and \( g(x) = e^x \), we compute:
\[
f(f(x)) = f(x - 1) = (x - 1) - 1 = x - 2
\]
\[
g(f(f(x))) = e^{x - 2}
\]
Thus, the differential equation becomes:
\[
\frac{dy}{dx} + \frac{y}{\sqrt{x}} = e^{-2\sqrt{x}} \cdot e^{x - 2} = e^{x - 2\sqrt{x} - 2}
\]
Step 2: Solve using integrating factor
The equation is linear of the form \( \frac{dy}{dx} + P(x)y = Q(x) \), where:
\[
P(x) = \frac{1}{\sqrt{x}}, \quad Q(x) = e^{x - 2\sqrt{x} - 2}
\]
Integrating factor \( \mu(x) \):
\[
\mu(x) = e^{\int P(x) dx} = e^{2\sqrt{x}}
\]
Multiply through by \( \mu(x) \):
\[
e^{2\sqrt{x}} \frac{dy}{dx} + \frac{e^{2\sqrt{x}}}{\sqrt{x}} y = e^{x - 2}
\]
The left side is \( \frac{d}{dx}(y e^{2\sqrt{x}}) \), so:
\[
\frac{d}{dx}(y e^{2\sqrt{x}}) = e^{x - 2}
\]
Integrate both sides:
\[
y e^{2\sqrt{x}} = \int e^{x - 2} dx = e^{x - 2} + C
\]
Step 3: Apply initial condition and find \( y(1) \)
Using \( y(0) = 0 \):
\[
0 \cdot e^{0} = e^{-2} + C \Rightarrow C = -e^{-2}
\]
Thus:
\[
y e^{2\sqrt{x}} = e^{x - 2} - e^{-2}
\]
At \( x = 1 \):
\[
y(1) e^{2} = e^{-1} - e^{-2} = \frac{1}{e} - \frac{1}{e^2}
\]
\[
y(1) = \frac{e - 1}{e^3} \cdot \frac{1}{e} = \frac{e - 1}{e^4}
\]