To solve the given differential equation: \((1 + y^2) + (x - 2e^{\tan^{-1}y}) \frac{dy}{dx} = 0\), we start by rewriting it in a more standard form. We rearrange to find: \(\frac{dy}{dx} = -\frac{1+y^2}{x-2e^{\tan^{-1}y}}\).
Since \(x = f(y)\), the differential equation can also be represented in terms of \(y\). Substitute \(\frac{dx}{dy} = -\frac{x-2e^{\tan^{-1}y}}{1+y^2}\) and then simplify.
Let's solve the differential equation using variable separation. Rearranging gives:
\[\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{2e^{\tan^{-1}y}}{1+y^2}.\]
We identify this as a linear first-order differential equation. The standard form is \(\frac{dx}{dy} + P(y)x = Q(y)\), where \(P(y) = \frac{1}{1+y^2}\) and \(Q(y) = \frac{2e^{\tan^{-1}y}}{1+y^2}\).
The integrating factor \(I(y)\) is given by:
\[I(y) = e^{\int P(y) \, dy},\]
which calculates as:
\[I(y) = e^{\int \frac{1}{1+y^2} \, dy} = e^{\tan^{-1}y}.\]
Multiplying through by the integrating factor, the equation becomes:
\[e^{\tan^{-1}y}\frac{dx}{dy} + \frac{e^{\tan^{-1}y}x}{1+y^2} = \frac{2e^{2\tan^{-1}y}}{1+y^2}.\]
The left side is the derivative of \(xe^{\tan^{-1}y}\), so integrate both sides:
\[\frac{d}{dy}\left(xe^{\tan^{-1}y}\right) = \frac{2e^{2\tan^{-1}y}}{1+y^2}.\]
Integrating the right side gives:
\[xe^{\tan^{-1}y} = \int \frac{2e^{2\tan^{-1}y}}{1+y^2} \, dy = e^{2\tan^{-1}y} + C,\]
where \(C\) is the integration constant. Thus, we have:
\[x = e^{\tan^{-1}y} + Ce^{-\tan^{-1}y}.\]
Using the initial condition \(f(0) = 1\), we have:
\[1 = e^0 + Ce^0,\]
implying \(C = 0\).
Thus, \(x = e^{\tan^{-1}y}\).
Finally, evaluate \(f\left(\frac{1}{\sqrt{3}}\right):\)
\[f\left(\frac{1}{\sqrt{3}}\right) = e^{\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)}.\]
Note that \(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\), so:
\[f\left(\frac{1}{\sqrt{3}}\right) = e^{\frac{\pi}{6}},\]
which corresponds to the correct answer: \(e^{\frac{\pi}{6}}\).