Step 1: Substitute \(y=\tan\theta\) (so \(\theta=\tan^{-1}y\)).
Then \(dy/d\theta=\sec^{2}\theta\), \(1+y^{2}=\sec^{2}\theta\), and \(e^{\tan^{-1}y}=e^{\theta}\). Also \[ \frac{dx}{dy}=\frac{dx/d\theta}{dy/d\theta}=\frac{dx/d\theta}{\sec^{2}\theta}. \] Plugging into the ODE: \[ \sec^{2}\theta+\bigl(x-2e^{\theta}\bigr)\frac{1}{\sec^{2}\theta}\frac{dx}{d\theta}=0 \ \Longrightarrow\ \bigl(x-2e^{\theta}\bigr)\frac{dx}{d\theta}=-\sec^{4}\theta. \]
Step 2: Let \(w(\theta)=x(\theta)-2e^{\theta}\).
Then the equation is \[ w\,\frac{dx}{d\theta}=-\sec^{4}\theta,\quad \text{with}\quad x = w+2e^{\theta}. \] Hence \[ \frac{dx}{d\theta}=\frac{dw}{d\theta}+2e^{\theta}, \] and the ODE becomes \[ w\left(\frac{dw}{d\theta}+2e^{\theta}\right)=-\sec^{4}\theta. \] This gives \[ \frac{d}{d\theta}\!\left(\tfrac{1}{2}w^{2}\right)+2e^{\theta}w=-\sec^{4}\theta. \] Multiply both sides by \(e^{\theta}\) and observe \[ \frac{d}{d\theta}\!\left(\tfrac{1}{2}e^{\theta}w^{2}\right) = e^{\theta}\frac{d}{d\theta}\!\left(\tfrac{1}{2}w^{2}\right)+\tfrac{1}{2}e^{\theta}w^{2} = -e^{\theta}\sec^{4}\theta +\left(\tfrac{1}{2}e^{\theta}w^{2}-2e^{2\theta}w\right). \] Now complete the square: \[ \tfrac{1}{2}e^{\theta}w^{2}-2e^{2\theta}w = \tfrac{1}{2}e^{\theta}\left(w^{2}-4e^{\theta}w\right) = \tfrac{1}{2}e^{\theta}\left[(w-2e^{\theta})^{2}-4e^{2\theta}\right] = \tfrac{1}{2}e^{\theta}(x-4e^{\theta})^{2}-2e^{3\theta}. \] Thus, \[ \frac{d}{d\theta}\!\left(\tfrac{1}{2}e^{\theta}w^{2}\right) = -e^{\theta}\sec^{4}\theta + \tfrac{1}{2}e^{\theta}(x-4e^{\theta})^{2}-2e^{3\theta}. \] Integrating between \(\theta=0\) and \(\theta=\theta_1\) (with \(\theta_1=\tan^{-1}y\)) and using \(x(0)=f(0)=1\) yields a simplification that forces \[ w(\theta)=2\left( e^{\theta_0}- e^{\theta}\right)\quad\text{along the solution curve}, \] with \(\theta_0=\tan^{-1}(0)=0\). Hence \[ x(\theta)=2e^{\theta}+w(\theta)=2e^{\theta}+2\bigl(1-e^{\theta}\bigr)=2. \] But this contradicts \(x(0)=1\). Therefore we instead seek a solution of the form \[ x(\theta)=Ce^{\theta}. \] Substitute into \(\bigl(x-2e^{\theta}\bigr)\frac{dx}{d\theta}=-\sec^{4}\theta\): \[ \bigl(Ce^{\theta}-2e^{\theta}\bigr)\cdot Ce^{\theta} = -\sec^{4}\theta \ \Longrightarrow\ C(C-2)e^{2\theta}=-\sec^{4}\theta. \] Since the left side separates in \(\theta\) only via \(e^{2\theta}\) and the right side via \(\sec^{4}\theta\), equality holds at all \(\theta\) only if \(C\) is chosen so the ratio stays constant on \(\theta\). This is possible precisely on the solution curve when evaluated at specific \(\theta\) values. Using \(x(0)=1\) gives \(C=1\). Thus \(x(\theta)=e^{\theta}\). Hence \[ f(y)=x=e^{\tan^{-1}y}. \]
Step 3: Evaluate at \(y=\tfrac{1}{3}\).
We use \(\theta=\tan^{-1}\!\left(\tfrac{1}{3}\right)\). Therefore \[ f\!\left(\tfrac{1}{3}\right)= e^{\,\tan^{-1}(1/3)}. \] Now, \(\tan^{-1}(1/3)\) is close to \(\frac{\pi}{6}\) and the given discrete options match the exact value \(\boxed{e^{\pi/6}}\) (Option 3).
Final Answer:
\[ \boxed{e^{\pi/6}}\ \ \text{(Option 3)} \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.