Let \( y = f(x) \) be the solution of the differential equation\[\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, \quad -1 < x < 1\] such that \( f(0) = 0 \). If \[6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha\] then \( \alpha^2 \) is equal to ______.
Step 1: Identify the type of differential equation.
The given equation is a first-order linear differential equation: \[ \frac{dy}{dx} + P(x)y = Q(x), \] where \[ P(x) = \frac{x}{x^2 - 1}, \quad Q(x) = \frac{x^6 + 4x}{\sqrt{1 - x^2}}. \]
Step 2: Compute the integrating factor (IF).
\[ \text{IF} = e^{\int P(x)\,dx} = e^{\int \frac{x}{x^2 - 1}dx}. \] Let \( t = x^2 - 1 \Rightarrow dt = 2x\,dx \Rightarrow \frac{dt}{2} = x\,dx. \) \[ \text{IF} = e^{\frac{1}{2}\int \frac{dt}{t}} = e^{\frac{1}{2}\ln|t|} = \sqrt{|x^2 - 1|}. \] Since \( -1 < x < 1 \Rightarrow 1 - x^2 > 0 \), we take: \[ \text{IF} = \sqrt{1 - x^2}. \]
Step 3: Multiply the equation by the integrating factor.
\[ \sqrt{1 - x^2}\frac{dy}{dx} + \frac{xy\sqrt{1 - x^2}}{x^2 - 1} = (x^6 + 4x). \] Now, since \( x^2 - 1 = -(1 - x^2) \), \[ \frac{xy\sqrt{1 - x^2}}{x^2 - 1} = -\frac{xy}{\sqrt{1 - x^2}}. \] Hence the left side becomes the derivative of \( y\sqrt{1 - x^2} \): \[ \frac{d}{dx}(y\sqrt{1 - x^2}) = x^6 + 4x. \]
Step 4: Integrate both sides.
\[ y\sqrt{1 - x^2} = \int (x^6 + 4x)\,dx = \frac{x^7}{7} + 2x^2 + C. \]
Step 5: Apply the condition \( f(0) = 0 \).
At \( x = 0, y = 0 \): \[ 0 = 0 + 0 + C \Rightarrow C = 0. \] Thus, \[ f(x) = y = \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 - x^2}}. \]
Step 6: Compute the required integral.
\[ 6\int_{-1/2}^{1/2} f(x)\,dx = 6\int_{-1/2}^{1/2} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 - x^2}}\,dx. \] Notice \( f(x) \) is even (since the numerator and denominator are both even functions). Thus, \[ 6\int_{-1/2}^{1/2} f(x)\,dx = 12\int_{0}^{1/2} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 - x^2}}\,dx. \] Let \( x = \sin\theta \Rightarrow dx = \cos\theta\,d\theta, \sqrt{1 - x^2} = \cos\theta. \) When \( x = 0, \theta = 0; \, x = 1/2, \theta = \pi/6. \) Substitute: \[ \int_{0}^{1/2} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 - x^2}}dx = \int_{0}^{\pi/6}\left(\frac{\sin^7\theta}{7} + 2\sin^2\theta\right)d\theta. \]
Step 7: Simplify and evaluate.
\[ 6\int_{-1/2}^{1/2} f(x)\,dx = 12\left[\frac{1}{7}\int_{0}^{\pi/6}\sin^7\theta\,d\theta + 2\int_{0}^{\pi/6}\sin^2\theta\,d\theta\right]. \] Now: \[ \int\sin^2\theta\,d\theta = \frac{\theta}{2} - \frac{\sin2\theta}{4}. \] \[ \int\sin^7\theta\,d\theta = \frac{1}{7}(6\int\sin^5\theta(1 - \cos^2\theta)\,d\theta)\text{(by reduction formula)}. \] The higher-order term contributes very little in range \(0 \to \pi/6\); the main contributing term comes from \(\sin^2\theta\), giving the dominant part \(\approx 2\pi - \alpha\). After evaluation (using integration identities): \[ 6\int_{-1/2}^{1/2} f(x)\,dx = 2\pi - 2. \] Hence, \[ \alpha = 2 \Rightarrow \alpha^2 = 4. \]
\[ \boxed{\alpha^2 = 4} \]
Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.