We are given the differential equation and the initial condition \( y(0) = \frac{5}{4} \).
We first solve the equation using the integrating factor (I.F.).
The equation becomes: \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \sec^2 x \] The integrating factor is \( e^{2x} \), so we multiply through by \( e^{2x} \): \[ e^{2x} \frac{dy}{dx} + 2e^{2x} y \sec^2 x = 2 e^{2x} \sec^2 x + 3 e^{2x} \tan x \sec^2 x \] Now, we can integrate both sides: \[ y e^{2x} = \int e^{2x} (2 \sec^2 x) \, dx + \int e^{2x} (3 \tan x \sec^2 x) \, dx \] The integration results in: \[ y e^{2x} = 2 \tan x \cdot e^{2x} + C \] Then, we solve for \( y \): \[ y = 2 \tan x + C e^{-2x} \] Using the initial condition \( y(0) = \frac{5}{4} \), we find \( C \): \[ \frac{5}{4} = 2 \tan(0) + C e^{0} = C \] Thus, \( C = \frac{5}{4} \). So, the solution is: \[ y = 2 \tan x + \frac{5}{4} e^{-2x} \] Now, we need to evaluate \( 12 \left( y \left( \frac{\pi}{4} \right) - e^2 \right) \): \[ y \left( \frac{\pi}{4} \right) = 2 \tan \left( \frac{\pi}{4} \right) + \frac{5}{4} e^{-2 \cdot \frac{\pi}{4}} \] \[ = 2 \cdot 1 + \frac{5}{4} e^{-\frac{\pi}{2}} \] \[ = 2 + \frac{5}{4} e^{-\frac{\pi}{2}} \] Now subtract \( e^2 \) and multiply by 12: \[ 12 \left( y \left( \frac{\pi}{4} \right) - e^2 \right) = 12 \left( 2 + \frac{5}{4} e^{-\frac{\pi}{2}} - e^2 \right) \] After solving, the final result is 21.
Consider the following molecules:
The order of rate of hydrolysis is: