Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.
Let \( y=y(x) \) solve the linear differential equation \( \dfrac{dy}{dx} + 2y\sec^2 x = 2\sec^2 x + 3\tan x \cdot \sec^2 x \) with \( y(0)=\dfrac{5}{4} \). We are to evaluate \( 12\!\left( y\!\left(\dfrac{\pi}{4}\right) - e^{-2}\right) \).
This is a first-order linear ODE \( y' + P(x)y = Q(x) \). The integrating factor is \( \mu(x)=e^{\int P(x)\,dx} \). The solution is \( y\mu = \int \mu Q\,dx + C \).
\[ P(x)=2\sec^2 x \;\Rightarrow\; \mu(x)=e^{\int 2\sec^2 x\,dx}=e^{2\tan x}. \]Step 1: Multiply the ODE by the integrating factor \(e^{2\tan x}\) to get an exact derivative:
\[ \frac{d}{dx}\!\Big( y\,e^{2\tan x} \Big) \;=\; e^{2\tan x}\!\left(2\sec^2 x + 3\tan x\,\sec^2 x\right). \]Step 2: Integrate the right-hand side using the substitution \(u=\tan x,\; du=\sec^2 x\,dx\):
\[ \int e^{2\tan x}\!\left(2\sec^2 x + 3\tan x\,\sec^2 x\right)\!dx = \int e^{2u}(2+3u)\,du. \] \[ \int e^{2u}(2+3u)\,du = e^{2u}\!\left(\frac{3u}{2}+\frac{1}{4}\right)+C. \]Step 3: Return to \(x\) and solve for \(y\):
\[ y\,e^{2\tan x}=e^{2\tan x}\!\left(\frac{3}{2}\tan x+\frac{1}{4}\right)+C \;\Rightarrow\; y=\frac{3}{2}\tan x+\frac{1}{4}+C\,e^{-2\tan x}. \]Step 4: Use the initial condition \(y(0)=\dfrac{5}{4}\) (\(\tan 0=0\)) to find \(C\):
\[ \frac{5}{4}=0+\frac{1}{4}+C \;\Rightarrow\; C=1. \] \[ \therefore\; y(x)=\frac{3}{2}\tan x+\frac{1}{4}+e^{-2\tan x}. \]At \(x=\dfrac{\pi}{4}\), \(\tan\dfrac{\pi}{4}=1\), hence
\[ y\!\left(\frac{\pi}{4}\right)=\frac{3}{2}\cdot 1+\frac{1}{4}+e^{-2}=\frac{7}{4}+e^{-2}. \] \[ 12\left( y\!\left(\frac{\pi}{4}\right)-e^{-2}\right)=12\left(\frac{7}{4}\right)=21. \]Answer: 21
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to:
Let \( y = f(x) \) be the solution of the differential equation\[\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, \quad -1 < x < 1\] such that \( f(0) = 0 \). If \[6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha\] then \( \alpha^2 \) is equal to ______.
Sliding contact of a potentiometer is in the middle of the potentiometer wire having resistance \( R_p = 1 \, \Omega \) as shown in the figure. An external resistance of \( R_e = 2 \, \Omega \) is connected via the sliding contact.
The current \( i \) is : 
A line charge of length \( \frac{a}{2} \) is kept at the center of an edge BC of a cube ABCDEFGH having edge length \( a \). If the density of the line is \( \lambda C \) per unit length, then the total electric flux through all the faces of the cube will be : (Take \( \varepsilon_0 \) as the free space permittivity)