Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.
Let \( y=y(x) \) solve the linear differential equation \( \dfrac{dy}{dx} + 2y\sec^2 x = 2\sec^2 x + 3\tan x \cdot \sec^2 x \) with \( y(0)=\dfrac{5}{4} \). We are to evaluate \( 12\!\left( y\!\left(\dfrac{\pi}{4}\right) - e^{-2}\right) \).
This is a first-order linear ODE \( y' + P(x)y = Q(x) \). The integrating factor is \( \mu(x)=e^{\int P(x)\,dx} \). The solution is \( y\mu = \int \mu Q\,dx + C \).
\[ P(x)=2\sec^2 x \;\Rightarrow\; \mu(x)=e^{\int 2\sec^2 x\,dx}=e^{2\tan x}. \]Step 1: Multiply the ODE by the integrating factor \(e^{2\tan x}\) to get an exact derivative:
\[ \frac{d}{dx}\!\Big( y\,e^{2\tan x} \Big) \;=\; e^{2\tan x}\!\left(2\sec^2 x + 3\tan x\,\sec^2 x\right). \]Step 2: Integrate the right-hand side using the substitution \(u=\tan x,\; du=\sec^2 x\,dx\):
\[ \int e^{2\tan x}\!\left(2\sec^2 x + 3\tan x\,\sec^2 x\right)\!dx = \int e^{2u}(2+3u)\,du. \] \[ \int e^{2u}(2+3u)\,du = e^{2u}\!\left(\frac{3u}{2}+\frac{1}{4}\right)+C. \]Step 3: Return to \(x\) and solve for \(y\):
\[ y\,e^{2\tan x}=e^{2\tan x}\!\left(\frac{3}{2}\tan x+\frac{1}{4}\right)+C \;\Rightarrow\; y=\frac{3}{2}\tan x+\frac{1}{4}+C\,e^{-2\tan x}. \]Step 4: Use the initial condition \(y(0)=\dfrac{5}{4}\) (\(\tan 0=0\)) to find \(C\):
\[ \frac{5}{4}=0+\frac{1}{4}+C \;\Rightarrow\; C=1. \] \[ \therefore\; y(x)=\frac{3}{2}\tan x+\frac{1}{4}+e^{-2\tan x}. \]At \(x=\dfrac{\pi}{4}\), \(\tan\dfrac{\pi}{4}=1\), hence
\[ y\!\left(\frac{\pi}{4}\right)=\frac{3}{2}\cdot 1+\frac{1}{4}+e^{-2}=\frac{7}{4}+e^{-2}. \] \[ 12\left( y\!\left(\frac{\pi}{4}\right)-e^{-2}\right)=12\left(\frac{7}{4}\right)=21. \]Answer: 21
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 