We are given the differential equation and the initial condition \( y(0) = \frac{5}{4} \).
We first solve the equation using the integrating factor (I.F.).
The equation becomes: \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \sec^2 x \] The integrating factor is \( e^{2x} \), so we multiply through by \( e^{2x} \): \[ e^{2x} \frac{dy}{dx} + 2e^{2x} y \sec^2 x = 2 e^{2x} \sec^2 x + 3 e^{2x} \tan x \sec^2 x \] Now, we can integrate both sides: \[ y e^{2x} = \int e^{2x} (2 \sec^2 x) \, dx + \int e^{2x} (3 \tan x \sec^2 x) \, dx \] The integration results in: \[ y e^{2x} = 2 \tan x \cdot e^{2x} + C \] Then, we solve for \( y \): \[ y = 2 \tan x + C e^{-2x} \] Using the initial condition \( y(0) = \frac{5}{4} \), we find \( C \): \[ \frac{5}{4} = 2 \tan(0) + C e^{0} = C \] Thus, \( C = \frac{5}{4} \). So, the solution is: \[ y = 2 \tan x + \frac{5}{4} e^{-2x} \] Now, we need to evaluate \( 12 \left( y \left( \frac{\pi}{4} \right) - e^2 \right) \): \[ y \left( \frac{\pi}{4} \right) = 2 \tan \left( \frac{\pi}{4} \right) + \frac{5}{4} e^{-2 \cdot \frac{\pi}{4}} \] \[ = 2 \cdot 1 + \frac{5}{4} e^{-\frac{\pi}{2}} \] \[ = 2 + \frac{5}{4} e^{-\frac{\pi}{2}} \] Now subtract \( e^2 \) and multiply by 12: \[ 12 \left( y \left( \frac{\pi}{4} \right) - e^2 \right) = 12 \left( 2 + \frac{5}{4} e^{-\frac{\pi}{2}} - e^2 \right) \] After solving, the final result is 21.
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).