We are given that:
\[
f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) - \tan \left( \frac{x}{2^{r+2}} \right)}{1} \right)
\]
This simplifies to:
\[
f(x) = \tan x
\]
Next, calculate the limit:
\[
\lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} = \lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x}
\]
Using L'Hopital's Rule, we compute:
\[
\lim_{x \to 0} \frac{e^x - e^{\tan x}}{x - \tan x} = 1
\]