\[ f(x) = \begin{cases} 3x, & \text{if } x < 0 \\ \min(1 + x + \lfloor x \rfloor, 2 + x \lfloor x \rfloor), & \text{if } 0 \leq x \leq 2 \\ 5, & \text{if } x > 2 \end{cases} \]
The function changes definition at \(x = 0\) and \(x = 2\). Evaluate limits from left and right at these points:
\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 3x = 0 \]
\[ \lim_{x \to 0^+} f(x) = \min(1 + 0 + 0, 2 + 0 \times 0) = 1 \]
\[ \lim_{x \to 2^-} f(x) = \min(1 + 2 + 1, 2 + 2 \times 1) = 4 \]
\[ \lim_{x \to 2^+} f(x) = 5 \]
Discontinuity at \(x = 0\) and \(x = 2\).
Check for differentiability at integer points within \([0, 2]\) and at \(x = 2\), as \(f(x)\) involves the floor function, which is non-differentiable at integers:
\[ f'(x) \text{ is not defined at } x = 1, 2 \]
\[ \alpha = 2 \quad (\text{discontinuity at 0 and 2}) \]
\[ \beta = 3 \quad (\text{non-differentiability at 0, 1, and 2}) \]
\[ \alpha + \beta = 5 \]

If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
The integral $ \int_{0}^{\pi} \frac{8x dx}{4 \cos^2 x + \sin^2 x} $ is equal to
Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
