To solve the problem of determining when \( |f(x) + g(x)| = |f(x)| + |g(x)| \) for the functions \( f(x) = 2x - 5 \) and \( g(x) = 7 - 2x \), first analyze the expressions:
Now, evaluate \( |f(x)| + |g(x)| \):
Conclusion: The condition \( |f(x) + g(x)| = |f(x)| + |g(x)| \) holds when \( |f(x)| + |g(x)| = 2 \), which occurs only in the interval \( \frac{5}{2} \le x \le \frac{7}{2} \).
Therefore, the answer is \( \frac{5}{2} \le x \le \frac{7}{2} \).
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: