To solve the problem of determining when \( |f(x) + g(x)| = |f(x)| + |g(x)| \) for the functions \( f(x) = 2x - 5 \) and \( g(x) = 7 - 2x \), first analyze the expressions:
Now, evaluate \( |f(x)| + |g(x)| \):
Conclusion: The condition \( |f(x) + g(x)| = |f(x)| + |g(x)| \) holds when \( |f(x)| + |g(x)| = 2 \), which occurs only in the interval \( \frac{5}{2} \le x \le \frac{7}{2} \).
Therefore, the answer is \( \frac{5}{2} \le x \le \frac{7}{2} \).
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to: