To solve the problem of determining when \( |f(x) + g(x)| = |f(x)| + |g(x)| \) for the functions \( f(x) = 2x - 5 \) and \( g(x) = 7 - 2x \), first analyze the expressions:
Now, evaluate \( |f(x)| + |g(x)| \):
Conclusion: The condition \( |f(x) + g(x)| = |f(x)| + |g(x)| \) holds when \( |f(x)| + |g(x)| = 2 \), which occurs only in the interval \( \frac{5}{2} \le x \le \frac{7}{2} \).
Therefore, the answer is \( \frac{5}{2} \le x \le \frac{7}{2} \).
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).