We are given that:
$\sqrt{29 - 12\sqrt{5}} = a + b\sqrt{n}$
Squaring both sides:
$29 - 12\sqrt{5} = (a + b\sqrt{n})^2 = a^2 + 2ab\sqrt{n} + b^2n$
Equating the rational and irrational parts:
- $a^2 + b^2n = 29$ (rational part)
- $2ab\sqrt{n} = -12\sqrt{5}$ (irrational part)
From $2ab\sqrt{n} = -12\sqrt{5}$, comparing the terms under the square root gives $n = 5$, so:
$2ab\sqrt{5} = -12\sqrt{5} \implies ab = -6$
Now, using $a^2 + b^2n = 29$, we substitute $n = 5$:
$a^2 + 5b^2 = 29$
We have two equations:
1. $ab = -6$
2. $a^2 + 5b^2 = 29$
By trial and error or systematic solving, we find $a = 3$, $b = -2$, and $n = 5$.
Thus, $a + b + n = 3 - 2 + 5 = 6$.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: