\( \log_6(3 + 4x - x^2)>1 \)
\( 3 + 4x - x^2>6 \) \( x^2 - 4x + 3<0 \)
\( (x-1)(x-3)<0 \) \( x \in (1, 3) \) So \( a = 1 \) and \( b = 3 \)
\( \Rightarrow \int_0^{2} [x^2] dx = ? \) \( I = \int_0^1 [x^2] dx + \int_1^{\sqrt{2}} [x^2] dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2] dx + \int_{\sqrt{3}}^{2} [x^2] dx \)
\( = 0 + |x|_1^{\sqrt{2}} + 2|x|_{\sqrt{2}}^{\sqrt{3}} + 3|x|_{\sqrt{3}}^{2} \) \( = (\sqrt{2}-1) + 2(\sqrt{3}-\sqrt{2}) + 3(2-\sqrt{3}) \) \( = 5 - \sqrt{2} - \sqrt{3} \) \( \Rightarrow p + q + r = 10 \)
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: