\( \log_6(3 + 4x - x^2)>1 \)
\( 3 + 4x - x^2>6 \) \( x^2 - 4x + 3<0 \)
\( (x-1)(x-3)<0 \) \( x \in (1, 3) \) So \( a = 1 \) and \( b = 3 \)
\( \Rightarrow \int_0^{2} [x^2] dx = ? \) \( I = \int_0^1 [x^2] dx + \int_1^{\sqrt{2}} [x^2] dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2] dx + \int_{\sqrt{3}}^{2} [x^2] dx \)
\( = 0 + |x|_1^{\sqrt{2}} + 2|x|_{\sqrt{2}}^{\sqrt{3}} + 3|x|_{\sqrt{3}}^{2} \) \( = (\sqrt{2}-1) + 2(\sqrt{3}-\sqrt{2}) + 3(2-\sqrt{3}) \) \( = 5 - \sqrt{2} - \sqrt{3} \) \( \Rightarrow p + q + r = 10 \)
Match List-I with List-II: List-I