Let f : R → R be a differentiable function such that
\(f(\frac{π}{4})=\sqrt2,f(\frac{π}{2})=0 \) and \(f′(\frac{π}{2})=1\)
and let
\(g(x) = \int_{x}^{\frac{\pi}{4}} \left(f'(t)\sec(t) + \tan(t)\sec(t)f(t)\right) \, dt\)
for\( x∈(\frac{π}{4},\frac{π}{2})\) Then \(\lim_{{x \to \frac{\pi}{2}^-}} g(x)\)is equal to
2
3
4
-3
The correct answer is (B) : 3
Given :
\(f(\frac{π}{4})=\sqrt2,f(\frac{π}{2})=0\)
and
\(f′(\frac{π}{2})=1\)
\(g(x) = \int_{x}^{\frac{\pi}{4}} \left(f'(t) \sec(t) + \tan(t) \tan(t) \sec(t) f(t)\right) \, dt\)
=\([\sec(t) + f(t)]_{x}^{\frac{\pi}{4}} = 2 - \sec(x) \cdot f(x)\)
Now,
\(\lim_{{x \to \frac{\pi}{2}^-}}g(x) = \lim_{{h \to 0}} g\left(\frac{\pi}{2} - h\right) = \lim_{{h \to 0}} \left[2 -cosec(h)) \cdot f\left(\frac{\pi}{2} - h\right)\right]\)
\(\lim_{{h \to 0}} \left[2 - \frac{f\left(\frac{\pi}{2} - h\right)} {\sin(h)}\right] = \lim_{{h \to 0}} \left[2 + \frac{f'\left(\frac{\pi}{2} - h\right)}{ \cos(h)}\right] = 3\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives