We are given:
\[
x^2 \sin\left(\frac{\pi}{x^2}\right) = 0.
\]
This implies:
\[
\sin\left(\frac{\pi}{x^2}\right) = 0 \quad \text{(for \( x \neq 0 \))}.
\]
This is satisfied when:
\[
\frac{\pi}{x^2} = n\pi, \quad \text{so } x = \frac{1}{\sqrt{n}}, \quad (n>0).
\]
If \( x \in \left(\frac{1}{\pi^2}, \frac{1}{\pi}\right] \), then:
\[
\frac{1}{\pi^2}<\frac{1}{\sqrt{n}} \leq \frac{1}{\pi}.
\]
Squaring all sides:
\[
\frac{1}{\pi^4}<\frac{1}{n} \leq \frac{1}{\pi^2}.
\]
Taking reciprocals:
\[
\pi^4>n \geq \pi^2.
\]
Approximating \( \pi^4 \approx 97 \) and \( \pi^2 \approx 9 \), we find:
\[
n = 9, 10, 11, \ldots, 97.
\]
Thus, there are more than 25 solutions for \( f(x) = 0 \) in the interval \( \left(\frac{1}{\pi^2}, \frac{1}{\pi}\right]. \)