\(f(x) = \begin{cases} \frac{sin(x-|x|)}{x-|x|} & \quad {x \in(-2,-1) } \\ max{2x,3[|x|]}, & \quad \text{|x|<1}\\1 & \quad \text{,otherwise} \end{cases}\) Where [t] denotes greatest integer t. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is