The functional equation given is:
\[ f\left( \frac{x}{y} \right) = \frac{f(x)}{f(y)}. \]
This suggests an exponential-like function. Assume \( f(x) = x^k \) for some constant \( k \).
Verify that \( f(x) = x^k \) satisfies the functional equation:
\[ f\left( \frac{x}{y} \right) = \left( \frac{x}{y} \right)^k = \frac{x^k}{y^k} = \frac{f(x)}{f(y)}. \]
So, \( f(x) = x^k \) is a valid solution.
Differentiating \( f(x) = x^k \):
\[ f'(x) = kx^{k-1}. \]
Given \( f'(1) = 2024 \):
\[ f'(1) = k = 2024. \]
Therefore, \( f(x) = x^{2024} \).
Check which option matches: Substitute \( f(x) = x^{2024} \) and \( f'(x) = 2024x^{2023} \) in each option.
Option (1):
\[ xf'(x) - 2024f(x) = x \times 2024x^{2023} - 2024x^{2024} = 0. \]
Therefore, the correct answer is:
\[ xf'(x) - 2024f(x) = 0. \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :