The functional equation given is:
\[ f\left( \frac{x}{y} \right) = \frac{f(x)}{f(y)}. \]
This suggests an exponential-like function. Assume \( f(x) = x^k \) for some constant \( k \).
Verify that \( f(x) = x^k \) satisfies the functional equation:
\[ f\left( \frac{x}{y} \right) = \left( \frac{x}{y} \right)^k = \frac{x^k}{y^k} = \frac{f(x)}{f(y)}. \]
So, \( f(x) = x^k \) is a valid solution.
Differentiating \( f(x) = x^k \):
\[ f'(x) = kx^{k-1}. \]
Given \( f'(1) = 2024 \):
\[ f'(1) = k = 2024. \]
Therefore, \( f(x) = x^{2024} \).
Check which option matches: Substitute \( f(x) = x^{2024} \) and \( f'(x) = 2024x^{2023} \) in each option.
Option (1):
\[ xf'(x) - 2024f(x) = x \times 2024x^{2023} - 2024x^{2024} = 0. \]
Therefore, the correct answer is:
\[ xf'(x) - 2024f(x) = 0. \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.