We are given that the function \( f(x) = \frac{x}{3} + \frac{3}{x} + 3 \) is strictly increasing in \( (-\infty, \alpha_1) \cup (\alpha_2, \infty) \) and strictly decreasing in \( (\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5) \).
Step 1: Find the derivative of \( f(x) \)
To determine where \( f(x) \) is increasing or decreasing, we first find the derivative:
\[
f'(x) = \frac{d}{dx} \left( \frac{x}{3} + \frac{3}{x} + 3 \right)
\]
\[
f'(x) = \frac{1}{3} - \frac{3}{x^2}
\]
Step 2: Find critical points
Set the derivative equal to zero to find the critical points:
\[
f'(x) = 0 \quad \Rightarrow \quad \frac{1}{3} - \frac{3}{x^2} = 0
\]
\[
\Rightarrow \quad \frac{3}{x^2} = \frac{1}{3}
\]
\[
\Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = 3 \text{ or } x = -3
\]
Thus, the critical points are \( x = 3 \) and \( x = -3 \).
Step 3: Analyze intervals
For \( x < -3 \), \( f'(x) > 0 \) (strictly increasing).
For \( -3 < x < 3 \), \( f'(x) < 0 \) (strictly decreasing).
For \( x > 3 \), \( f'(x) > 0 \) (strictly increasing).
Thus, the values \( \alpha_1 = -3, \alpha_2 = 3 \).
Step 4: Find the sum of squares of critical points
We are asked to find \( \sum_{i=1}^5 (\alpha_i)^2 \).
The critical points are \( \alpha_1 = -3 \), \( \alpha_2 = 3 \), and the values for \( \alpha_3, \alpha_4, \alpha_5 \) correspond to intervals where \( f(x) \) is decreasing.
Thus, the sum is:
\[
(-3)^2 + (3)^2 = 9 + 9 = 36
\]