Question:

If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.

Show Hint

Quick Tip: When proving second-order derivatives, make sure to take the derivative twice and simplify. The goal is often to eliminate terms and show that the equation holds.
Updated On: Jun 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are given that \( y = 5 \cos x - 3 \sin x \). First, differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( 5 \cos x - 3 \sin x \right) \] Using the derivatives \( \frac{d}{dx} (\cos x) = -\sin x \) and \( \frac{d}{dx} (\sin x) = \cos x \), we get: \[ \frac{dy}{dx} = -5 \sin x - 3 \cos x \] Next, differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( -5 \sin x - 3 \cos x \right) \] Using the derivatives \( \frac{d}{dx} (\sin x) = \cos x \) and \( \frac{d}{dx} (\cos x) = -\sin x \), we get: \[ \frac{d^2y}{dx^2} = -5 \cos x + 3 \sin x \] Now, we add \( \frac{d^2y}{dx^2} \) and \( y \): \[ \frac{d^2y}{dx^2} + y = \left( -5 \cos x + 3 \sin x \right) + \left( 5 \cos x - 3 \sin x \right) \] Simplifying: \[ = (-5 \cos x + 5 \cos x) + (3 \sin x - 3 \sin x) \] \[ = 0 \] Thus, we have proved that: \[ \frac{d^2y}{dx^2} + y = 0 \]
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions