Let f be a real valued continuous function on [0, 1] and
\(f(x) = x + \int_{0}^{1} (x - t) f(t) \,dt\)
Then, which of the following points (x, y) lies on the curve y = f(x)?
The correct answer is (D) : (6,8)
\(f(x) = x \int_{0}^{1} (x - t) f(t) \,dt\)
\(f(x) = x + x\int_{0}^{1} f(t) \,dt - \int_{0}^{1} t \cdot f(t) \,dt\)
\(f(x) = x \left(1 + \int_{0}^{1} f(t) \,dt \right) - \int_{0}^{1} t \cdot f(t) \,dt\)
Let
\(1 + \int_{0}^{1} f(t) \,dt = a \quad \text{and} \quad \int_{0}^{1} t \cdot f(t) \,dt = 1\)
f(x) = ax-b
Now,
\(a = 1 + \int_{0}^{1} (at - b) \,dt = 1 + \frac{a}{2} - b \implies \frac{a}{2} + b = 1\)
\(b = \int_{0}^{1} t(at - b) \,dt = \frac{a}{3} - \frac{b}{2} \implies \frac{3b}{2} = \frac{a}{3} \implies b = \frac{2a}{9}\)
\(\frac{a}{2} + \frac{2a}{9} = 1\)
\(⇒ a = \frac{18}{13}\) \(b = \frac{4}{13}\)
\(ƒ(x) = \frac{18x-4}{13}\)
(6,8) lies on f(x)
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: