Step 1: Evaluate at $x=0$
Substituting $x=0$ into the given equation, we get
\[
2(0 + 2)^2f(0) - 3(0 + 2)^2 = 10 \int_0^0 (t + 2)f(t) dt.
\]
This simplifies to
\[
2(4)f(0) - 3(4) = 0,
\]
\[
8f(0) - 12 = 0,
\]
\[
8f(0) = 12,
\]
\[
f(0) = \frac{12}{8} = \frac{3}{2}.
\]
Step 2: Differentiate both sides with respect to $x$
Differentiating both sides of the equation with respect to $x$, we use the Fundamental Theorem of Calculus:
\[
\frac{d}{dx} \left[ 2(x + 2)^2 f(x) - 3(x + 2)^2 \right] = \frac{d}{dx} \left[ 10 \int_0^x (t + 2) f(t) dt \right]
\]
\[
2\left[ 2(x + 2)f(x) + (x + 2)^2 f'(x) \right] - 6(x + 2) = 10(x + 2)f(x).
\]
\[
4(x + 2)f(x) + 2(x + 2)^2 f'(x) - 6(x + 2) = 10(x + 2)f(x).
\]
Step 3: Simplify the equation
Divide the equation by $2(x + 2)$ (assuming $x \neq -2$):
\[
2f(x) + (x + 2)f'(x) - 3 = 5f(x).
\]
\[
(x + 2)f'(x) = 3f(x) + 3.
\]
Step 4: Solve the differential equation
Rearrange the equation:
\[
\frac{f'(x)}{f(x) + 1} = \frac{3}{x + 2}.
\]
Integrate both sides with respect to $x$:
\[
\int \frac{f'(x)}{f(x) + 1} dx = \int \frac{3}{x + 2} dx.
\]
\[
\ln |f(x) + 1| = 3 \ln |x + 2| + C.
\]
\[
\ln |f(x) + 1| = \ln |(x + 2)^3| + C.
\]
Exponentiate both sides:
\[
|f(x) + 1| = e^C |(x + 2)^3|.
\]
\[
f(x) + 1 = K (x + 2)^3,
\]
where $K = \pm e^C$ is a constant.
\[
f(x) = K (x + 2)^3 - 1.
\]
Step 5: Find the constant K
We know $f(0) = \frac{3}{2}$. Substitute $x = 0$ into the equation:
\[
\frac{3}{2} = K(0 + 2)^3 - 1.
\]
\[
\frac{3}{2} = 8K - 1.
\]
\[
\frac{5}{2} = 8K.
\]
\[
K = \frac{5}{16}.
\]
Step 6: Find f(x)
Substitute $K$ back into the equation for $f(x)$:
\[
f(x) = \frac{5}{16} (x + 2)^3 - 1.
\]
Step 7: Calculate f(2)
Substitute $x = 2$ into the equation:
\[
f(2) = \frac{5}{16} (2 + 2)^3 - 1.
\]
\[
f(2) = \frac{5}{16} (4)^3 - 1.
\]
\[
f(2) = \frac{5}{16} (64) - 1.
\]
\[
f(2) = 20 - 1.
\]
\[
f(2) = 19.
\]
Therefore, $f(2) = 19$.