Question:

Let $ f : [1, \infty) \to [2, \infty) $ be a differentiable function, If $ \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 $ for all $ x \geq 1 $, then the value of $ f(3) $ is :

Show Hint

For this type of problem, use the properties of definite integrals and apply the fundamental theorem of calculus along with the chain rule. Simplify the equation step by step for easy solution.
Updated On: Apr 27, 2025
  • \) is :
  • 18
  • 32
  • 22
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

\[ 10 \frac{d}{dx} \int_1^x f(t) \, dt = \frac{d}{dx} \left( 5x f(x) - x^5 - 9 \right) \] \[ \Rightarrow 10 f(x) = 5f(x) + 5x f'(x) - 5x^4 \] \[ \Rightarrow f(x) + x^4 = x f'(x) \] \[ \Rightarrow \frac{dy}{dx} + y \left( \frac{1}{x} \right) = x^3 \] \[ \Rightarrow \frac{dy}{dx} = x^3 - y \left( \frac{1}{x} \right) \] \[ \Rightarrow y e^{-\frac{1}{x}} = \int x^3 e^{\frac{1}{x}} \, dx + c \] \[ \Rightarrow y = \frac{y}{x} \cdot \int x^3 \, dx \] \[ \Rightarrow y = \frac{x^3}{3} + c \] \[ \Rightarrow y = \frac{x^3}{3} + c \] \[ \text{Put } x = 1 \text{ in the given equation:} \] \[ 0 = 5f(1) - 9 - 9 \] \[ f(1) = 2 \Rightarrow c = \frac{5}{3} \] \[ f(3) = \frac{27}{3} + \frac{5}{3} \] \[ f(3) = 32 \]
Was this answer helpful?
0
0