The wire is bent into a circle. The resistance between diametrically opposite points will be the resistance of two semicircles in parallel.
\( L = 25 \) m, \( A = 5 mm^2 = 5 \times 10^{-6} m^2 \)
\( \rho = 2 \times 10^{-6} \Omega m \) \( R_{wire} = \frac{\rho L}{A} = \frac{2 \times 10^{-6} \times 25}{5 \times 10^{-6}} = 10 \Omega \)
The resistance of each semicircle is \( \frac{R_{wire}}{2} = \frac{10}{2} = 5 \Omega \)
The equivalent resistance of two semicircles in parallel is: \( R_{eq} = \frac{R/2}{2} = \frac{10}{4} = 2.5 \Omega \)
In the figure shown below, a resistance of 150.4 $ \Omega $ is connected in series to an ammeter A of resistance 240 $ \Omega $. A shunt resistance of 10 $ \Omega $ is connected in parallel with the ammeter. The reading of the ammeter is ______ mA.
Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function such that $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt$ for all $x \in [0, \infty)$. Then the area of the region bounded by $y = f(x)$ and the coordinate axes is