The wire is bent into a circle. The resistance between diametrically opposite points will be the resistance of two semicircles in parallel.
\( L = 25 \) m, \( A = 5 mm^2 = 5 \times 10^{-6} m^2 \)
\( \rho = 2 \times 10^{-6} \Omega m \) \( R_{wire} = \frac{\rho L}{A} = \frac{2 \times 10^{-6} \times 25}{5 \times 10^{-6}} = 10 \Omega \)
The resistance of each semicircle is \( \frac{R_{wire}}{2} = \frac{10}{2} = 5 \Omega \)
The equivalent resistance of two semicircles in parallel is: \( R_{eq} = \frac{R/2}{2} = \frac{10}{4} = 2.5 \Omega \)
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: