To solve this problem, we need to calculate the resistance between diametrically opposite points on a circular wire. Given are the following:
Let's calculate the resistance using the formula for resistance of a wire:
\(R = \frac{\rho \cdot L}{A}\)
Substituting the values,
\(R = \frac{2 \times 10^{-6} \cdot 25}{5 \times 10^{-6}}\)
Simplifying this gives:
\(R = \frac{50 \times 10^{-6}}{5 \times 10^{-6}} = 10 \, \Omega\)
This resistance is for the full length of the wire. Since the wire is bent into a circle, we treat it as two equal halves. Therefore, the resistance between the two diametrically opposite points is equivalent to two halves of \(10 \, \Omega\) in parallel:
The resistance of each half-circle is \(R_{\text{half}} = \frac{R}{2} = \frac{10}{2} = 5 \, \Omega\).
The total resistance \(R_{\text{total}}\) across the diameter is then given by the parallel resistance formula:
\(\frac{1}{R_{\text{total}}} = \frac{1}{R_{\text{half}}} + \frac{1}{R_{\text{half}}} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}\)
This simplifies to:
\(R_{\text{total}} = \frac{5}{2} = 2.5 \, \Omega\)
Thus, the resistance between the diametrically opposite points is 2.5 \( \Omega \), which matches the given correct answer.
The wire is bent into a circle. The resistance between diametrically opposite points will be the resistance of two semicircles in parallel.
\( L = 25 \) m, \( A = 5 mm^2 = 5 \times 10^{-6} m^2 \)
\( \rho = 2 \times 10^{-6} \Omega m \) \( R_{wire} = \frac{\rho L}{A} = \frac{2 \times 10^{-6} \times 25}{5 \times 10^{-6}} = 10 \Omega \)
The resistance of each semicircle is \( \frac{R_{wire}}{2} = \frac{10}{2} = 5 \Omega \)
The equivalent resistance of two semicircles in parallel is: \( R_{eq} = \frac{R/2}{2} = \frac{10}{4} = 2.5 \Omega \)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9 V with internal resistance of 1 \(\Omega\) is connected across these points is ______ J. 
The following diagram shows a Zener diode as a voltage regulator. The Zener diode is rated at \(V_z = 5\) V and the desired current in load is 5 mA. The unregulated voltage source can supply up to 25 V. Considering the Zener diode can withstand four times of the load current, the value of resistor \(R_s\) (shown in circuit) should be_______ \(\Omega\).
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.