The wire is bent into a circle. The resistance between diametrically opposite points will be the resistance of two semicircles in parallel.
\( L = 25 \) m, \( A = 5 mm^2 = 5 \times 10^{-6} m^2 \)
\( \rho = 2 \times 10^{-6} \Omega m \) \( R_{wire} = \frac{\rho L}{A} = \frac{2 \times 10^{-6} \times 25}{5 \times 10^{-6}} = 10 \Omega \)
The resistance of each semicircle is \( \frac{R_{wire}}{2} = \frac{10}{2} = 5 \Omega \)
The equivalent resistance of two semicircles in parallel is: \( R_{eq} = \frac{R/2}{2} = \frac{10}{4} = 2.5 \Omega \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: