We are given the differential equation \( x^2 f'(x) = 2f(x) + 3 \) and the initial condition \( f(1) = 4 \). To solve for \( f(x) \), we first divide both sides of the equation by \( x^2 \): \[ f'(x) = \frac{2f(x) + 3}{x^2}. \] We solve this first-order linear differential equation using the method of integrating factors. After solving, we substitute \( x = 2 \) and calculate \( 2f(2) \).
Final Answer: \( 2f(2) = 29 \).
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 