We are given the differential equation \( x^2 f'(x) = 2f(x) + 3 \) and the initial condition \( f(1) = 4 \). To solve for \( f(x) \), we first divide both sides of the equation by \( x^2 \): \[ f'(x) = \frac{2f(x) + 3}{x^2}. \] We solve this first-order linear differential equation using the method of integrating factors. After solving, we substitute \( x = 2 \) and calculate \( 2f(2) \).
Final Answer: \( 2f(2) = 29 \).
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: