Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function such that $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt$ for all $x \in [0, \infty)$. Then the area of the region bounded by $y = f(x)$ and the coordinate axes is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: