8
9
The given equations are: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{(foci are } (ae, 0) \text{ and } (-ae, 0)) \] \[ \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1 \quad \text{(foci are } (Ae', 0) \text{ and } (-Ae', 0)) \] From the above, we have: \[ 2ae = 2\sqrt{3} \quad \Rightarrow \quad ae = \sqrt{3} \] Also: \[ 2Ae' = 2\sqrt{3} \quad \Rightarrow \quad Ae' = \sqrt{3} \] So, we get: \[ ae = Ae' \quad \Rightarrow \quad \frac{e}{e'} = \frac{A}{a} \] This gives: \[ \frac{1}{3} = \frac{A}{a} \quad \Rightarrow \quad a = 3A \] Now, using \( a - A = 2 \), we have: \[ a - A = 2 \quad \Rightarrow \quad a = 3 \quad \text{and} \quad A = 1 \] Substituting into the equation \( A = \sqrt{3} \), we get: \[ A = \sqrt{3}, \quad e = \frac{1}{\sqrt{3}}, \quad e' = \sqrt{3} \] Now, for the semi-major axis \( b^2 \), we have: \[ b^2 = a^2 (1 - e^2) \] \[ b^2 = 6 \] For the semi-major axis of the hyperbola \( B^2 \): \[ B^2 = A^2 \left( (e')^2 - 1 \right) \] \[ B^2 = 2 \] Finally, the sum of the lengths of the latus rectums for both the ellipse and the hyperbola is: \[ \text{Sum of LR} = \frac{2b^2}{a} + \frac{2B^2}{A} = 8 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]