Question:

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y) passing through origin and touching the circle $C$ externally, then the radius of$ T $is equal to

Updated On: Oct 10, 2024
  • $\frac{1}{2}$
  • $\frac{1}{4}$
  • $\frac{\sqrt{3}}{2}$
  • $\frac{\sqrt{3}}{\sqrt{2}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


$C \equiv(x-1)^{2}+(y-1)^{2}=1$
Radius of $T=|y|$
$T$ touches $C$ externally
$(0-1)^{2}+(y-1)^{2}=(1+|y|)^{2}$
$\Rightarrow 1+y^{2}+1-2 y=1+y^{2}+2|y|$
If $y>\,0$, $y^{2}+2-2 y=y^{2}+1+2 y$
$\Rightarrow 4 y=1$
$\Rightarrow y=\frac{1}{4}$
If $y
Was this answer helpful?
0
0

Top Questions on Conic sections

View More Questions