Step 1: Find the roots of the quadratic equation.
\[ x^2 - x + 2 = 0 \] \[ x = \frac{1 \pm \sqrt{1 - 8}}{2} = \frac{1 \pm i\sqrt{7}}{2} \]
Hence, \[ \alpha = \frac{1 + i\sqrt{7}}{2}, \quad \beta = \frac{1 - i\sqrt{7}}{2} \] Since \( \text{Im}(\alpha) > \text{Im}(\beta) \), we take: \[ \alpha = \frac{1 + i\sqrt{7}}{2} \]
From the equation \( x^2 - x + 2 = 0 \): \[ \alpha + \beta = 1, \quad \alpha\beta = 2 \]
Since \( \alpha \) is a root: \[ \alpha^2 = \alpha - 2 \] We will use this recurrence relation: \[ \alpha^2 = \alpha - 2 \]
\[ \alpha^3 = \alpha \cdot \alpha^2 = \alpha(\alpha - 2) = \alpha^2 - 2\alpha \] Substitute \( \alpha^2 = \alpha - 2 \): \[ \alpha^3 = (\alpha - 2) - 2\alpha = -\alpha - 2 \]
\[ \alpha^4 = \alpha \cdot \alpha^3 = \alpha(-\alpha - 2) = -\alpha^2 - 2\alpha \] Substitute \( \alpha^2 = \alpha - 2 \): \[ \alpha^4 = -(\alpha - 2) - 2\alpha = -3\alpha + 2 \]
\[ \alpha^5 = \alpha \cdot \alpha^4 = \alpha(-3\alpha + 2) = -3\alpha^2 + 2\alpha \] Substitute \( \alpha^2 = \alpha - 2 \): \[ \alpha^5 = -3(\alpha - 2) + 2\alpha = -3\alpha + 6 + 2\alpha = -\alpha + 6 \]
\[ \alpha^6 = \alpha \cdot \alpha^5 = \alpha(-\alpha + 6) = -\alpha^2 + 6\alpha \] Substitute \( \alpha^2 = \alpha - 2 \): \[ \alpha^6 = -(\alpha - 2) + 6\alpha = -\alpha + 2 + 6\alpha = 5\alpha + 2 \]
Since \( \beta \) satisfies the same relation \( \beta^2 = \beta - 2 \): \[ \beta^3 = -\beta - 2 \] \[ \beta^4 = -3\beta + 2 \]
We need: \[ \alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2 \] Substitute the derived values: \[ \alpha^6 = 5\alpha + 2, \quad \alpha^4 = -3\alpha + 2, \quad \beta^4 = -3\beta + 2, \quad \alpha^2 = \alpha - 2 \]
Now: \[ \alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2 = (5\alpha + 2) + (-3\alpha + 2) + (-3\beta + 2) - 5(\alpha - 2) \] Simplify: \[ = (5\alpha - 3\alpha - 5\alpha) + (-3\beta) + (2 + 2 + 2 + 10) \] \[ = (-3\alpha - 3\beta) + 16 \] \]
\[ -3(\alpha + \beta) + 16 = -3(1) + 16 = 13 \]
\[ \boxed{13} \]
We aim to compute:
\(\alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2\)
Since α and β satisfy\( x^2 - x + 2 = 0\), we know:
\(\alpha^2 = \alpha - 2, \quad \beta^2 = \beta - 2\)
Using these relations, we compute higher powers of α:
\(= \alpha^4(\alpha - 2) + \alpha^4 - 5\alpha^2 + (\beta - 2)^2\)
\(= \alpha^5 - \alpha^4 - 5\alpha^2 + \beta^2 - 4\beta + 4\)
\(= \alpha^3(\alpha - 2) - \alpha^4 - 5\alpha^2 + \beta - 2 - 4\beta + 4\)
\(= -2\alpha^3 - 5\alpha^2 - 3\beta + 2\)
\(= -2\alpha(\alpha - 2) - 5\alpha^2 - 3\beta + 2\)
\(= -7\alpha^2 + 4\alpha - 3\beta + 2\)
\(= -7(\alpha - 2) + 4\alpha - 3\beta + 2\)
\(= -3\alpha - 3\beta + 16\)
\(= -3(1) + 16\)
\(= 13\)
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
