Express \(z\) as a Complex Number:
Let \(z = x + iy\) where \(x, y \in \mathbb{R}\) and \(\overline{z} = x - iy\).
\[ \overline{z}^2 = (x - iy)^2 = x^2 - y^2 - 2ixy. \]
Given: \[ \overline{z}^2 + |z| = 0. \]
Here, \(|z| = \sqrt{x^2 + y^2}\), so the equation becomes:
\[ x^2 - y^2 - 2ixy + \sqrt{x^2 + y^2} = 0. \]
Separating Real and Imaginary Parts:
The real part: \[ x^2 - y^2 + \sqrt{x^2 + y^2} = 0. \]
The imaginary part: \[ -2xy = 0. \]
From the imaginary part, either \(x = 0\) or \(y = 0\).
Case 1: \(x = 0\)
Substituting \(x = 0\) into the real part: \[ -y^2 + |y| = 0 \implies |y| = y^2. \]
This gives \(y = 0\) or \(y = \pm 1\). Since we are looking for non-zero solutions, we have:
\[ y = \pm 1 \implies z = i \quad \text{or} \quad z = -i. \]
Case 2: \(y = 0\)
Substituting \(y = 0\) into the real part: \[ x^2 + \sqrt{x^2} = 0, \] which gives no non-zero solutions for \(x\).
Solutions:
Thus, the non-zero solutions are \(z = i\) and \(z = -i\).
Calculating \(\alpha\) and \(\beta\):
\[ \alpha = i + (-i) = 0, \quad \beta = i \cdot (-i) = -1. \]
Computing \(4(\alpha^2 + \beta^2)\):
\[ 4(\alpha^2 + \beta^2) = 4(0^2 + (-1)^2) = 4. \]
If \( \text{Re} \left( \frac{2z + i}{z + i} \right) + \text{Re} \left( \frac{2z - i}{z - i} \right) = 2 \) is a circle of radius \( r \) and centre \( (a, b) \), then \( \frac{15ab}{r^2} \) is equal to: