Let a triangle ABC be inscribed in the circle
\(x² - \sqrt2(x+y)+y² = 0\)
such that ∠BAC= π/2. If the length of side AB is √2, then the area of the ΔABC is equal to :
\(\frac{(\sqrt2+\sqrt6)}{3}\)
\(\frac{(\sqrt6+\sqrt3)}{2}\)
\(\frac{(3+\sqrt3)}{4}\)
\(\frac{(\sqrt6+2\sqrt3)}{4}\)
The correct answer is 1 , not there in the options
\(x² -\sqrt2(x+y)+y²=0\)
∴ Coordinates of centre of circle is \(( \frac{1}{\sqrt2} \frac{1}{\sqrt2} )\)
\(r = \sqrt{\frac{1}{2} + \frac{1}{2} - 0}\)
r = 1
BC = 2
Apply Pythagoras theorem in ΔABC, we get
AC² + AB² = BC²
⇒ AC² = 4-2 = 2
\(⇒ AC = \sqrt2\)
\(∴\) Area of ΔABC = \(\frac{1}{2}\) × AB × AC
\(\frac{1}{2} × \sqrt2 × \sqrt2 = \frac{2}{2} = 1 \) sq. unit
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Read More: Area under the curve formula