Let a triangle ABC be inscribed in the circle
\(x² - \sqrt2(x+y)+y² = 0\)
such that ∠BAC= π/2. If the length of side AB is √2, then the area of the ΔABC is equal to :
\(\frac{(\sqrt2+\sqrt6)}{3}\)
\(\frac{(\sqrt6+\sqrt3)}{2}\)
\(\frac{(3+\sqrt3)}{4}\)
\(\frac{(\sqrt6+2\sqrt3)}{4}\)
The correct answer is 1 , not there in the options
\(x² -\sqrt2(x+y)+y²=0\)
∴ Coordinates of centre of circle is \(( \frac{1}{\sqrt2} \frac{1}{\sqrt2} )\)
\(r = \sqrt{\frac{1}{2} + \frac{1}{2} - 0}\)
r = 1
BC = 2
Apply Pythagoras theorem in ΔABC, we get
AC² + AB² = BC²
⇒ AC² = 4-2 = 2
\(⇒ AC = \sqrt2\)
\(∴\) Area of ΔABC = \(\frac{1}{2}\) × AB × AC
\(\frac{1}{2} × \sqrt2 × \sqrt2 = \frac{2}{2} = 1 \) sq. unit
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Read More: Area under the curve formula