Let a triangle ABC be inscribed in the circle
\(x² - \sqrt2(x+y)+y² = 0\)
such that ∠BAC= π/2. If the length of side AB is √2, then the area of the ΔABC is equal to :
\(\frac{(\sqrt2+\sqrt6)}{3}\)
\(\frac{(\sqrt6+\sqrt3)}{2}\)
\(\frac{(3+\sqrt3)}{4}\)
\(\frac{(\sqrt6+2\sqrt3)}{4}\)
The correct answer is 1 , not there in the options
\(x² -\sqrt2(x+y)+y²=0\)
∴ Coordinates of centre of circle is \(( \frac{1}{\sqrt2} \frac{1}{\sqrt2} )\)
\(r = \sqrt{\frac{1}{2} + \frac{1}{2} - 0}\)
r = 1
BC = 2
Apply Pythagoras theorem in ΔABC, we get
AC² + AB² = BC²
⇒ AC² = 4-2 = 2
\(⇒ AC = \sqrt2\)
\(∴\) Area of ΔABC = \(\frac{1}{2}\) × AB × AC
\(\frac{1}{2} × \sqrt2 × \sqrt2 = \frac{2}{2} = 1 \) sq. unit
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Find \( P(0<X<5) \).
Find the equivalent capacitance between A and B, where \( C = 16 \, \mu F \).
If the equation of the parabola with vertex \( \left( \frac{3}{2}, 3 \right) \) and the directrix \( x + 2y = 0 \) is \[ ax^2 + b y^2 - cxy - 30x - 60y + 225 = 0, \text{ then } \alpha + \beta + \gamma \text{ is equal to:} \]
Read More: Area under the curve formula