Let a triangle ABC be inscribed in the circle
\(x² - \sqrt2(x+y)+y² = 0\)
such that ∠BAC= π/2. If the length of side AB is √2, then the area of the ΔABC is equal to :
\(\frac{(\sqrt2+\sqrt6)}{3}\)
\(\frac{(\sqrt6+\sqrt3)}{2}\)
\(\frac{(3+\sqrt3)}{4}\)
\(\frac{(\sqrt6+2\sqrt3)}{4}\)
The correct answer is 1 , not there in the options
\(x² -\sqrt2(x+y)+y²=0\)
∴ Coordinates of centre of circle is \(( \frac{1}{\sqrt2} \frac{1}{\sqrt2} )\)
\(r = \sqrt{\frac{1}{2} + \frac{1}{2} - 0}\)
r = 1

BC = 2
Apply Pythagoras theorem in ΔABC, we get
AC² + AB² = BC²
⇒ AC² = 4-2 = 2
\(⇒ AC = \sqrt2\)
\(∴\) Area of ΔABC = \(\frac{1}{2}\) × AB × AC
\(\frac{1}{2} × \sqrt2 × \sqrt2 = \frac{2}{2} = 1 \) sq. unit
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:

Read More: Area under the curve formula