1. Understand the problem:
Given matrix \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we need to find \( A^{10} \).
2. Observe the pattern for powers of A:
Compute lower powers to identify a pattern:
\[ A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A \]
\[ A^3 = A^2 \cdot A = 2A \cdot A = 2A^2 = 4A \]
Thus, \( A^n = 2^{n-1} A \).
3. Compute \( A^{10} \):
Using the pattern:
\[ A^{10} = 2^{10-1} A = 2^9 A \]
Correct Answer: (B) \( 2^9 A \)
First, compute $A^2$: \[ A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A \] Notice that: \[ A^n = 2^{n-1} A \quad \text{for } n \geq 1. \] Therefore: \[ A^{10} = 2^{10-1} A = 2^9 A. \] Hence, the correct answer is $2^9 A$.
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to: