1. Understand the problem:
Given matrix \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we need to find \( A^{10} \).
2. Observe the pattern for powers of A:
Compute lower powers to identify a pattern:
\[ A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A \]
\[ A^3 = A^2 \cdot A = 2A \cdot A = 2A^2 = 4A \]
Thus, \( A^n = 2^{n-1} A \).
3. Compute \( A^{10} \):
Using the pattern:
\[ A^{10} = 2^{10-1} A = 2^9 A \]
Correct Answer: (B) \( 2^9 A \)
First, compute $A^2$: \[ A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A \] Notice that: \[ A^n = 2^{n-1} A \quad \text{for } n \geq 1. \] Therefore: \[ A^{10} = 2^{10-1} A = 2^9 A. \] Hence, the correct answer is $2^9 A$.
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is