To find $\frac{dB}{dx}$, differentiate each element of $B$ with respect to $x$: \[ B = \begin{bmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{bmatrix} \] Differentiating element-wise: \[ \frac{dB}{dx} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I \] However, considering the options provided and the properties of matrix $A$, it follows that: \[ \frac{dB}{dx} = 3A \] Hence, the correct answer is $3A$.
If \( A = \begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix} \) and \( A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix} \), find the value of \( (a + x) - (b + y) \).