The probability mass function of a binomial distribution is: \[ P(X = r) = \binom{n}{r} p^r (1 - p)^{n - r}. \] Given $P(X = 2) = 9P(X = 3)$, substitute into the formula: \[ \binom{5}{2} p^2 (1 - p)^3 = 9 \binom{5}{3} p^3 (1 - p)^2. \] Simplify the binomial coefficients: \[ \frac{5 \cdot 4}{2} \cdot p^2 (1 - p)^3 = 9 \cdot \frac{5 \cdot 4 \cdot 3}{6} \cdot p^3 (1 - p)^2. \] \[ 10p^2(1 - p)^3 = 90p^3(1 - p)^2. \] Divide both sides by $10p^2(1 - p)^2$: \[ 1 - p = 9p. \] Simplify: \[ 1 = 9p + p \implies 1 = 10p \implies p = \frac{1}{10}. \]