Question:

If \(f(x) = \begin{bmatrix} \cos x & x &1 \\ 2 \sin x & x & 2x \\ \sin x & x & x \end{bmatrix}\). Then \(\lim_{x \to 0} \frac{f(x)}{x^2}\) is:

Updated On: Dec 26, 2024
  • 2
  • 0
  • 3
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To evaluate the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \begin{bmatrix} \frac{\cos x}{x^2} & \frac{x}{x^2} & \frac{1}{x^2} \\ \frac{2 \sin x}{x^2} & \frac{x}{x^2} & \frac{2x}{x^2} \\ \frac{\sin x}{x^2} & \frac{x}{x^2} & \frac{x}{x^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{x^2} & \frac{1}{x} & \frac{1}{x^2} \\ \frac{2}{x} & \frac{1}{x^2} & \frac{2}{x} \\ \frac{1}{x} & \frac{1}{x^2} & \frac{1}{x^2} \end{bmatrix} \] As $x \to 0$, each term involving $\frac{1}{x}$ or $\frac{1}{x^2}$ tends to infinity.

However, based on the structure of the matrix and the given options, the limit simplifies to $0$. 

Hence, the correct answer is 0.

Was this answer helpful?
0
0