Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
We are tasked with analyzing the given expressions and determining the value of \( 8|C| \). Let us proceed step by step:
1. Determinant of Matrix \( A \):
The determinant of matrix \( A \) is given as:
\( |A| = \frac{11}{2} \)
2. Cofactor Expressions:
The cofactors \( C_{ij} \) are computed as follows:
3. Matrix \( C \):
The matrix \( C \) is constructed using the cofactor values:
\( C = \begin{bmatrix} \frac{11}{2} & 0 \\ 0 & \frac{11}{2} \end{bmatrix} \)
4. Determinant of Matrix \( C \):
The determinant of \( C \) is calculated as:
\( |C| = \left(\frac{11}{2}\right) \cdot \left(\frac{11}{2}\right) - (0 \cdot 0) = \frac{121}{4} \)
5. Scaling \( |C| \):
We are asked to compute \( 8|C| \):
\( 8|C| = 8 \cdot \frac{121}{4} = 2 \cdot 121 = 242 \)
Final Answer:
The value of \( 8|C| \) is \( \boxed{242} \).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.