Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
We are given the determinant equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = 0. \]
Step 1: Expanding the determinant Expanding along the first row: \[ (x^2 + 2x + 2) \begin{vmatrix} x - 1 & 1 \\ -1 & 1 \end{vmatrix} - (x+2) \begin{vmatrix} 2x + 1 & 1 \\ x + 2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2x + 1 & x - 1 \\ x + 2 & -1 \end{vmatrix} = 0. \] Computing the 2×2 determinants: \[ \begin{vmatrix} x - 1 & 1 \\ -1 & 1 \end{vmatrix} = (x-1)(1) - (1)(-1) = x - 1 + 1 = x. \] \[ \begin{vmatrix} 2x + 1 & 1 \\ x + 2 & 1 \end{vmatrix} = (2x + 1)(1) - (1)(x + 2) = 2x + 1 - x - 2 = x - 1. \] \[ \begin{vmatrix} 2x + 1 & x - 1 \\ x + 2 & -1 \end{vmatrix} = (2x + 1)(-1) - (x - 1)(x + 2). \] Expanding: \[ - (2x + 1) - (x^2 + 2x - x - 2) = -2x - 1 - x^2 - x + 2 = -x^2 - 3x + 1. \]
Step 2: Forming the equation \[ (x^2 + 2x + 2)(x) - (x+2)(x-1) + (-x^2 - 3x + 1) = 0. \]
Expanding: \[ x^3 + 2x^2 + 2x - x^2 - 2x - x^2 - 3x + 1 = 0. \] \[ x^3 - 2x^2 - 3x + 1 = 0. \]
Step 3: Finding the sum of positive roots The roots of the equation: \[ x = \frac{1 \pm \sqrt{13}}{2}. \]
Since we need the sum of positive roots: \[ \frac{1 + \sqrt{13}}{2}. \]
Thus, the correct answer is: \[ \boxed{\frac{1 + \sqrt{13}}{2}} \]
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix with positive integers as its elements. The elements of \( A \) are such that the sum of all the elements of each row is equal to 6, and \( a_{22} = 2 \).
\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
\[ D = \begin{vmatrix} -\frac{bc}{a^2} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{ac}{b^2} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix} \]
The roots of the equation \( x^3 - 3x^2 + 3x + 7 = 0 \) are \( \alpha, \beta, \gamma \) and \( w, w^2 \) are complex cube roots of unity. If the terms containing \( x^2 \) and \( x \) are missing in the transformed equation when each one of these roots is decreased by \( h \), then