Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
We are given the determinant equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = 0. \]
Step 1: Expanding the determinant Expanding along the first row: \[ (x^2 + 2x + 2) \begin{vmatrix} x - 1 & 1 \\ -1 & 1 \end{vmatrix} - (x+2) \begin{vmatrix} 2x + 1 & 1 \\ x + 2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2x + 1 & x - 1 \\ x + 2 & -1 \end{vmatrix} = 0. \] Computing the 2×2 determinants: \[ \begin{vmatrix} x - 1 & 1 \\ -1 & 1 \end{vmatrix} = (x-1)(1) - (1)(-1) = x - 1 + 1 = x. \] \[ \begin{vmatrix} 2x + 1 & 1 \\ x + 2 & 1 \end{vmatrix} = (2x + 1)(1) - (1)(x + 2) = 2x + 1 - x - 2 = x - 1. \] \[ \begin{vmatrix} 2x + 1 & x - 1 \\ x + 2 & -1 \end{vmatrix} = (2x + 1)(-1) - (x - 1)(x + 2). \] Expanding: \[ - (2x + 1) - (x^2 + 2x - x - 2) = -2x - 1 - x^2 - x + 2 = -x^2 - 3x + 1. \]
Step 2: Forming the equation \[ (x^2 + 2x + 2)(x) - (x+2)(x-1) + (-x^2 - 3x + 1) = 0. \]
Expanding: \[ x^3 + 2x^2 + 2x - x^2 - 2x - x^2 - 3x + 1 = 0. \] \[ x^3 - 2x^2 - 3x + 1 = 0. \]
Step 3: Finding the sum of positive roots The roots of the equation: \[ x = \frac{1 \pm \sqrt{13}}{2}. \]
Since we need the sum of positive roots: \[ \frac{1 + \sqrt{13}}{2}. \]
Thus, the correct answer is: \[ \boxed{\frac{1 + \sqrt{13}}{2}} \]
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
If \( a \neq b \neq c \), then
\[ \Delta_1 = \begin{vmatrix} 1 & a^2 & bc \\ 1 & b^2 & ca \\ 1 & c^2 & ab \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \]and
\[ \frac{\Delta_1}{\Delta_2} = \frac{6}{11} \]then what is \( 11(a + b + c) \)?
\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix with positive integers as its elements. The elements of \( A \) are such that the sum of all the elements of each row is equal to 6, and \( a_{22} = 2 \).
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
\(\begin{vmatrix} a+b+2c & a & b \\[0.3em] c & b+c+2c & b \\[0.3em] c & a & c+a2b \end{vmatrix}\)